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Abstract The laser dynamic speckle is an optical phe-

nomenon produced when a laser light is reflected from an

illuminated surface undergoing some kind of activity. It

allows a non-destructive process for the detection of

activities that are not easily observable, such as seed via-

bility, paint drying, bacterial activities, corrosion pro-

cesses, food decomposition, fruit bruising, etc. The analysis

of these processes in real time makes it possible to develop

important practical applications of commercial, biological

and technological interest. This paper presents a new dig-

ital system based on granular computing algorithms to

characterize speckle dynamics within the time domain. The

selected platform to evaluate the system is Field Pro-

grammable Gate Array (FPGA) technology. The obtained

minimum clock periods and latencies enable speckle image

processing with real-time constraints with a maximum

throughput of about thousand 512 9 512 fps.

Keywords Dynamic speckle � Granular computing �
Programmable logic � Real-time processing �
Rough-fuzzy sets

1 Introduction

The laser speckle is an optical phenomenon that occurs

when a reflected laser light from a lighted surface is

shown as a granular pattern of high contrast. When there

is some activity in the illuminated surface this speckle

pattern evolves in time. The dynamics of the observed

physical phenomenon can be assessed by one of the

behaviors of interest called ‘‘boiling’’, because of its

appearance, where the speckles disappear and reappear

without any significant displacement. This behavior can

be observed in different types of phenomena like bio-

logical (seed viability [4], bacterial activity [20], fruit

bruising [14], etc.) or non-biological processes (drying of

paints [7, 12], corrosion [9], etc.); the activity is given by

the change of the sample properties due to diverse phys-

ical phenomena.

Captured sequences of laser speckle images must be

processed offline via a general purpose computer to char-

acterize the phenomena, using ad hoc-designed descriptors

that analyze the behavior of every pixel across the

sequence. A wide set of these descriptors can be found in

[18]; many of them carry out processes in the time domain,

such as the descriptor of Fujii [10], Generalized Differ-

ences [1], Fuzzy Granular Descriptor (FGD) [5], among

others. Other descriptors carry out this task using frequency

domain tools, like the High to Low Frequency ratio (HLR)

[11], and Frequency Band Decomposition [19]. Others deal

with the frequency–time domain, such as the Wavelet

Entropy Descriptor [16].

These descriptors perform differently depending on the

type of application. Cases belonging to the so-called bio-

speckle phenomena are quite difficult to characterize,

particularly when it comes to detecting regions of interest

in living specimens, such as regions of bruising in apples,
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viability in corn seed or bacteria activity in swarm

experiments.

One of the descriptors that showed greater efficacy in

these types of applications, and in turn presented the lowest

computational complexity, was the Fuzzy Granular

Descriptor (FGD) based on a fuzzy framework, presented

in [5] as QT. The FGD is neatly efficient for the segmen-

tation of biospeckle regions compared with results deriving

from time–frequency algorithms, like the Wavelet Entropy

Descriptor, which has high computational complexity [6].

Given the real-time operation requirement, the aim of

this work was to design a new version of the FGD algo-

rithm using concepts that link the Rough set and the Fuzzy

set theories, thus simplifying the process and reducing the

computational complexity. The FGD algorithm was opti-

mized for the design of a novel digital system that operates

in real time. A Rough-Fuzzy Granular Descriptor (RFGD)

algorithm was specifically designed for this implementa-

tion on the digital system.

The remainder of this article is organized as follows:

Sect. 2 presents the bases of the dynamic speckle signal

processing (DSSP) techniques, the FGD, and the transfor-

mation to RFGD; Sect. 3 explains the granular computing

algorithm with an emphasis on memory requirements;

Sect. 4 presents the circuit design in detail; Sect. 5 shows

synthesis results in terms of performance and area on

FPGA; finally, Sect. 6 summarizes the main conclusions.

2 Theoretical background

2.1 Dynamic speckle

When a coherent light source (laser) illuminates a non-

polished surface, surface roughness causes a random

interference phenomenon, known as ‘‘speckle’’. This phe-

nomenon is originated by the different path lengths

between scattering points of the surface and an observation

source. Optical systems can be used for scanning the

phenomenon and registering it in successive intensity

images. The images show peculiar speckle patterns

depending on surface roughness, the incoming light

wavelength, and the numerical aperture of the imaging

optical system (see Fig. 1).

The sequences of intensity images are captured at fixed

time intervals and the intensity variation of each pixel

through the sequence determines a one-dimensional signal

called ‘‘time history speckle pattern’’ (THSP) [13]. These

signals show a highly random behavior; hence, the sample

characterization involves the discovery of hidden patterns

in a noisy frame. Braga et al. [3] showed that THSP did not

behave as white noise, providing evidence that these signals

contain reliable information of the dynamics of the sample.

Most of the descriptors used for monitoring the dynamic

speckle activity require a large number of images. Most

implementations are based on programs running on general

purpose processors, so they generally cannot be carried out

in real time. Then special-purpose devices are considered

of interest when a real-time process is a must.

2.2 Rough-fuzzy granular descriptor (RFGD)

In speckle image processing, the speckle intensity evolu-

tion can be seen as temporal granulation [5], where levels

of brightness seen as information granules are merged.

Information granules are collections of entities, grouped

together due to their similarity, functional adjacency,

indistinguishability, coherence or alikeness [21]. In the

signal processing, the information granules contribute to

condensing a signal and representing it as a set of temporal

granules through an abstraction mechanism that synthe-

sizes the information [2]. The process is determined by the

suitable choice of the granules of information.

To generate information granules in FGD, several fuzzy

sets are defined into the intensity values domain of the

THSP. For a context of intensity values V = [0, 255] and

vi 2 V ; a fuzzy set Fk is defined by a membership func-

tion lF_k(vi) that takes gradual values in the real interval

[0,1] (Eq. 1).

In the work presented by Dai Pra et al. [5], three ordered

fuzzy sets k 2 fdark;medium; lightg are defined on the

one-dimensional space V. These fuzzy sets are represented

by partially overlapped trapezoidal membership func-

tions lF_k, where the membership function values different

from zero define the support (supp) of the fuzzy set (Eq. 2).

Fk ¼ fðvi; lFk
ðviÞÞ; vi 2 V and lFk

2 ½0; 1�g ð1Þ

supp Fk ¼ fvi 2 V ; lFk
ðviÞ[ 0g ð2Þ

The parameterization of the membership functions of

the fuzzy sets is crucial for a granule count that will depend

Fig. 1 Optical setup
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on the dynamics of the speckle patterns. To overcome the

variations of the intensity distributions among the cases of

application, we propose a simple and fast adaptive method,

which has been successfully tested in previous works

[5– 7]. Hence, to establish the parameters of the trapezoidal

membership functions, an intensity values histogram of

256 bins is built from a representative sample of the image

sequence. The frequency distribution of the histogram is

partitioned in five intensity value ranges so that a balanced

quantity of elements belongs to each one. Fuzzy sets are

defined considering that the first, middle and last intensity

ranges are associated with the maximum membership

values (core values) of the dark, medium and light fuzzy

sets, respectively. The remainder intervals take decreasing

and increasing membership values to both sides of the

partition. In this case, total overlapping of the contiguous

sets is assumed in these intervals (see Fig. 2a, b).

In this work, we adopt the approach of Rough Set theory

to define the intensity information granules. Given that the

Rough sets are defined from the knowledge acquired

through the methodology described above, we propose a

Rough-Fuzzy Granulation process [15]. The rough sets

philosophy is based on the assumption that a certain

amount of information (data and knowledge) is associated

with all objects of a universe U, expressed by means of

some attributes used to describe the object.

Objects that have the same description are inseparable

(similar) with respect to the set B of attributes considered.

This relationship of inseparability is the mathematical basis

of the theory, and it induces a partition of the universe of

objects U into inseparable blocks [x]B. Any subset X of the

universe U can be expressed in terms of these blocks

exactly or approximately. In this way, the set X can be

characterized by two ordinary sets called lower

approximation ðB� lower : BXÞ and upper approximation

ðB� upper : BXÞ [17]:

• The lower approximation of X consists of all blocks that

are subsets of X, that is to say that definitely belong to

X;BX ¼ fx 2 U : ½x�B � Xg:
• The upper approximation consists of all blocks that

could belong to X and have a non-empty intersection

with X, that is to say that definitely belong to X, and

blocks that cannot be determined with certainty

belonging to X, BX ¼ fx 2 U : ½x�B \ X 6¼ ;g:

In order to facilitate the encoding of the intensity range

in well-defined regions, given each fuzzy set, the approx-

imations of the corresponding rough set are defined. In this

particular case, where the object (pixel) has a single attri-

bute (intensity), it is defined in the universe V 2 ½0; 255�:
Considering the parameters of the trapezoidal membership

functions of the Fk fuzzy sets, with k 2
fdark;medium; lightg; the following rough set approxi-

mations are obtained: dark; dark;medium;medium; light;

and light:
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Fig. 2 Intervals definition
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•
dark ¼fvi 2 V : ½v�dark � V ; ldarkðviÞ ¼ 1g
dark ¼fvi 2 V : ½v�dark \ V 6¼ ;; vi 2 supp ldarkðviÞg

•
medium ¼ fvi 2 V : ½v�medium � V ; lmediumðviÞ ¼ 1g
medium ¼ fvi 2 V : ½v�medium \ V 6¼ ;

vi 2 supp lmediumðviÞg

•
light ¼fvi 2 V : ½v�light � V ; llightðviÞ ¼ 1g
light ¼fvi 2 V : ½v�light \ V 6¼ ;; v 2 supp llightðviÞg

These approximations arise from the five well-defined

intensity regions obtained by partitioning the frequency

distribution of the histogram. Table 1 shows the dependence

of each of the five regions (clearly shown in Fig. 2c) with the

approximations of the rough sets previously computed.

Each THSP is defined as a discrete signal S of elements

sn 2 ½0; 255�: Each granule of the S signal is defined as a

sequence of elements belonging to the same rough set upper

approximation (R), whose membership values are now

restricted to {0,1}. Figure 3 shows a fragment (51 samples) of

speckle signal and its decomposition in granules (dark,medium

and light) according to the Rough sets previously defined. As

theRk sets areoverlapped, suchwill be the case for thegranules.

The RFGD is computed using Eq. 3 applying QT to each

THSP or S signal.

QTðSÞ ¼
XZ�1

k¼0

jsucn;kðRkðsnÞÞj=T ; with n ¼ 2; 3; . . .; T:

ð3Þ

sucn;k ¼ 1 if Rkðsn�1Þ ¼ 0 ^ RkðsnÞ ¼ 1

0 in other case

�
ð4Þ

where T is the number of instances considered, n corre-

sponds to each instance in T, k identifies each rough set,

Z is the quantity of rough sets considered; and |.| indicates

cardinality, i.e., the quantity of granules registered in

T instances. In real time, to monitor the dynamics of the

phenomenon, the QT must be calculated when a new pixel

is sent from the camera controller, taking into account the

quantity of previously accumulated granules. Figure 3

shows the corresponding computed QT and the zone coding

employed in the algorithm explained in Sect. 3.

3 Activity computation algorithm

Considering the general case of Z rough sets, associated to

each fuzzy concept numbered from 0 to Z - 1, one defines

a coding system using Z bits xZ�1; xZ�2; . . .; x0; c zone-code

will be set to xc = 1, xi = c = 0 when there are no over-

lapping zones, while overlapping zone c and c ? 1 will be

set to xc = xc?1 = 1, xi = c, c?1 = 0.

Figure 3 shows the zone coding for three rough sets. Let

the vector xZ�1ðiÞ; xZ�2ðiÞ; . . .; x0ðiÞ be the coded intensity

of a given pixel at instance i. The quantity of granules QT

of a given pixel signal S may be computed as

Table 1 Regions equivalence

Regions Fuzzy set Rough set

G0 ldark(v) = 1 dark

G1 ldarkðvÞ 2 ð0; 1Þ ^ lmediumðvÞ 2 ð0; 1Þ dark \ medium

G2 lmedium(v) = 1 medium

G3 lmediumðvÞ 2 ð0; 1Þ ^ llightðvÞ 2 ð0; 1Þ medium \ light

G4 llight(v) = 1 light

Fig. 3 Granules density

computation in an arbitrary

signal
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QTðSÞ ¼
XT

i¼0

ðxZ�1ðiÞ ^ xZ�1ðiþ 1Þ

þ xZ�2ðiÞ ^ xZ�2ðiþ 1Þ þ � � � þ x0ðiÞ ^ x0ðiþ 1ÞÞ=T
ð5Þ

where xc(0) = 0, V c in [0, Z - 1] to cope with the first

instance. Without ambiguity,
P

and ? stand for the

arithmetic integer sum, while symbols x and ^ stand for the

Boolean complementation and the Boolean AND,

respectively.

Clearly, whenever bit xc(i) changes from 0 to 1 at

instance i ? 1, an integer 1 is added to the sum in Eq. 5, as

a new granule is detected in the S signal.

The data source (images) consists of Nf frames of Np

pixels with their respective intensity values:

Np ¼ Nr � Nc ð6Þ

Nr and Nc are the respective quantities of rows and columns

of each frame.

The activity index of a given pixel p is computed

according to Eq. 5.

The following algorithm consists of three steps. The first

two steps are actually preset procedures: the first step sets

the intensity histogram; the second step computes the actual

intensity region limits, featuring a balanced distribution of

pixels in each region. The third step computes granule

quantities and activity indexes (i.e., descriptors) as QT.

3.1 Gray-level histogram setup

For intensity values between 0 and 255, 8 bits are used. The

first captured frame is taken as data for this phase, so Np

pixels are involved (see Eq. 6). For counting purposes, 256

bin-registers are defined, one bin for each intensity value.

Thus, the gray-level histogram is built up as a 256-word

vector h. Word h(i) is formed by the quantity of pixels with

intensity i. In short, for every pixel with intensity i in the

frame, one unit will be added in the ith bin. The pseudo-

code in Algorithm 1 builds up vector h.

3.2 Computation of region limits

The next step is the computation of the region limits. The Z

rough sets are overlapped, generating Z non-overlapped

regions and Z - 1 regions where the functions are over-

lapped (Fig. 2), resulting in a total of ð2 � Z � 1Þ regions G.
Two values are necessary to define each region. Those

limit values are in [0, 255]. The left limit of the leftmost

region is 0 and the right limit of the rightmost region is

255. Now, the region limits are defined in such a way that

an (closest to) equal number of pixels would belong to each

region. Therefore, the gray-level histogram is used as input

for the region limits assignment. For this purpose, a bin

look-up procedure is carried out by adding bin stored

values from bin 0 on, up to the point when the accumulated

sum is closest to

Nm ¼ Np=ð2Z � 1Þ ð7Þ

Let bin i be the last one to be included in the first

counting, i will be the upper limit of the first region, and

i ? 1 the lower limit of the next region. This process is

then repeated from bin i ? 1 up to the point when the

accumulated count is closest to Nm. Figure 2 displays five

quite regular regions as the intensity values quantity has

been assumed to be equal for all regions. The pseudo-code

in Algorithm 2 computes the region limits.

3.3 Granular computing

At the granular computing stage, all the S signals related to

the corresponding Np pixels are sequentially built up and

analyzed to weigh up activities. The pixels are coming

from the camera serially, i.e., the first Nc pixels from the

first row and so on, up to the Nrth row; thus, an iterative

algorithm is proposed. For each incoming pixel (with

intensity data), the membership function value is computed

and compared with the previous value for the same pixel.

The most intuitive method would first determine the related

intensity region through comparison of the pixel intensity

J Real-Time Image Proc (2016) 11:535–545 539
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code with the respective region limits. Then, by matching

up to the pixel data at the preceding instance, up to two

new granules can be detected and added to the counter. An

alternative rests upon a preliminary implementation to

achieve a functional mapping of the intensity code 8-bit

vector onto a zone coding Z-bit vector. Further on, the

occurrence of a new granule is detected whenever, between

two successive instances, the zone coding vector value

changes in such a way that some bit switches from 0 to 1.

The previous membership zone coding values for every

pixel are stored in a memory-flag of (Nr 9 Nc) Z-bit words.

Actually, the pseudo-code in Algorithm 3 computes for-

mula 5. For this sake one defines the pseudo-Boolean

operator

Ni;jðk þ 1Þ ¼ xZ�1ðkÞ ^ xZ�1ðk þ 1Þ
þ xZ�2ðkÞ ^ xZ�2ðk þ 1Þ þ � � � þ x0ðkÞ ^ x0ðk þ 1Þ

ð8Þ

associated without ambiguity to zone coding vector ði; jÞ :
xZ�1ðk þ 1Þ; xZ�2ðk þ 1Þ; . . .; x0ðk þ 1Þ

3.4 Memory requirements

Granule counters: Np = Nr 9 Nc granule counters are

needed to cope with every pixel activity monitoring. This

involves a memory requirement, in bits, of

Cmem ¼ Np � L ð9Þ

where L stands for the register-cell size. As the maximum

quantity of instances (frames) is Nf = 2b , b ? 1 bits are

required for L. Actually, b bits are enough to count from 0

up to 2b - 1, but two granules could be involved at each

counting step (for the overlapping feature), so an extra bit

is needed.

Histogram setup: Assuming intensity values in [0, 255],

256 bin-memory registers are needed to store quantities in

[0, Np]. The memory requirement in bits is given as

Hmem ¼ 256� log2Np

� �
ð10Þ

Zone-code memory: At each new instance, the pixel

intensity (expressed by a zone-code) has to be matched to

the zone-coding of the same pixel at the preceding

instance. So zone-coding flags have to be stored and this

requires the following amount of memory

Fmem ¼ Np � Z: ð11Þ

In short, memory requirements are dominated by the

counters and the zone-code memories. In order to obtain

maximum performance, external memory access should be

reduced as much as possible. Table 2 shows memory

requirements for different image configurations. As shown

in Sect. 5, there are off-the-shelf programmable logic

devices with these amounts of on-chip memory.

4 Digital circuit

Figure 4 shows the digital circuit developed for the pro-

posed activity computation algorithm. It consists of three

main memories, described in Sect. 3.4, and four main

modules. There is one module for each algorithm in

Sect. 3, and an additional output module that computes the

quotient of the current granule count by the number of

processed frames.

The circuit is parameterized by the maximum number of

frames, Nf = 2b , the number of rows and columns in the

frame, and the activity index precision (i.e., the quotient).

Circuit inputs are provided by a camera controller that

drives a start signal to initiate a new computation; pxIn, a

grayscale 8-bit signal with the intensity values of a single

pixel at a time; pxInAddr, a pixel identification in [0, Np -

1] ; and frIn, a b-bit signal for the frame number. The

outputs are Q, a p-bit signal (p stands for the user-defined

precision) for the current pixel activity index; pxOutAddr, a

pixel identification in [0, Np - 1] related to the activity

index in Q; and frOut, a b-bit signal for the frame number

related to Q.

Table 2 Memory requirements in bits for different image setups

Np Nf Z Cmem Fmem Hmem Total

512 9 512 128 3 2,097,152 786,432 4,608 2,888,192

512 9 512 64 3 1,835,008 786,432 4,608 2,626,048

400 9 400 128 3 1,280,000 480,000 4,426 1,764,426

400 9 400 64 3 1,120,000 480,000 4,426 1,604,426

350 9 350 128 3 980,000 367,500 4,328 1,351,828

350 9 350 64 3 857,500 367,500 4,328 1,229,328
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4.1 The circuit to obtain the histogram

The first frame captured by the camera is analyzed in this

module. The 256 bin-registers defined in Sect. 3.1 are

stored in the MEM_HIST memory. The module reads this

memory addressed by the current pixel intensity in [0,

255]. The pixel count at this address is increased by one

and written back in the same register at the next clock

cycle, while a new pixel is reaching the read stage in a

pipelined fashion. To achieve this level of parallelism,

MEM_HIST must be a dual-port memory.

4.2 The circuit to compute the region limits

This circuit computes the region limits as described in

Sect. 3.2, using the histogram stored in MEM_HIST. This

is achieved by accessing MEM_HIST sequentially and

accumulating bin-register values in the AccData register up

to when Nm is exceeded (see Fig. 5). Then the current

HIST_MEM address is saved in the corresponding Region

register. This process is repeated four times as 2 � Z � 2

Region registers are needed considering three rough-fuzzy

zones in this circuit.

Fig. 4 Digital circuit to

compute the activity index of all

pixels in each new frame
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4.3 The circuit to count granules

This circuit updates the granule count for each image

pixel in a sequence of frames as explained in Sect. 3.3.

However, in order to obtain better throughput, the time-

consuming division operation is implemented in a sepa-

rate division module in a pipelined fashion, as described

in Sect. 4.4.

A new pixel from the current image is processed at each

clock cycle. The zone coding of the same pixel in the

previous image is read from MEM_FLAGS memory and

compared with its current zone coding (see Fig. 6). The

zone coding of the current pixel is obtained by comparing

its intensity with the previously computed region limits. If

the pixel intensity changes to new zones, up to two, the

corresponding granule count stored in MEM_COUNT is

increased accordingly by 0, 1, or 2 in the next clock cycle.

MEM_FLAGS is also updated with the current zone coding

in the next clock cycle.

In order to reach the maximum speed, MEM_COUNT

and MEM_FLAGS are read and written on a single clock

cycle. Therefore, dual-port memories are selected.

Fig. 5 Digital circuit to

compute the region limits

Fig. 6 Digital circuit to

compute granule counts
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4.4 Division for activity computation

The classic fixed-point restoring division algorithm is used

and customized to compute the activity index for each

pixel at every new frame [8]. That is fi,j / (k ? 1) of

Algorithm 3.

Granule counters store fi,j as ð log2Nf

� �
þ 1Þ-bit integer

numbers, the same operand width as for the current frame

number k ? 1 . As a new pixel is received from the camera

at every clock cycle, a pipelined divider circuit has been

designed in order to start (and complete) the computation

of a new quotient at every new clock cycle. As no nor-

malization is applied to the operands, some leading zeros

could be obtained for the quotients.

Section 3 shows that granule counters can be increased

by at most two units per frame. Thus, the activity index is

in [0, 2]. With p bits of fractional precision, an XX.X � � � X
format can be used. Moreover, as the maximum possible

quotient is 2 (i.e., 10.0 � � � 0), almost half of the combi-

nations could be wasted. In consequence, the division

module generates, with a latency of p ? 2 clock cycles, an

exact quotient of the form X.X � � � X for results\2, and the

approximation 1.1 � � � 1 when the quotient is exactly 2.

Once the histogram and region limits are computed, the

module that counts granules has a latency of 2 clock cycles.

Then the total latency of the circuit computing the activity

indexes is p ? 4 clock cycles.

5 Experiments

Table 3 shows the synthesis results carried out on FPGA

based on a Xilinx Virtex-6 device (xc6vlx130t ff484 -3).

The first column displays image sizes. The minimum clock

period, tp, the number of flip-flops, the number of slice-

LUTs, and the number of RAM blocks (RAMB36E1 ?

RAMB18E1) are shown for THSPs of 64 and 128

instances.

Although the area consumed in terms of programmable

resources (#ff and #LUT) is negligible in a modern FPGA

device, the area consumption grows slightly as the frame

size and the number of analyzed frames increase. However,

the size of the required embedded memory grows linearly

with the number of analyzed pixels.

Regarding the minimum clock period, the increase in tp
is larger than the one in area for the consumed program-

mable resources. This leads to the following critical path

study. In FPGA, when a single memory needs a significant

number of embedded block RAM resources to be imple-

mented, the delay in reading and writing data increases

accordingly. The minimum clock period increase in the

granules counting module occurs because it is necessary to

read big memory structures like MEM_COUNT and

MEM_FLAGS, then process the information (comparators,

switch zone logic, and adder), and finally write results

back. Thus, the critical path can be improved by splitting

this particular pipeline stage. The minimum clock period is

now tp,opt in Table 3. The small black rectangles in the

equitemporal dotted line PP in Figs. 4 and 6 stand for the

additional registers needed to implement this timing opti-

mization. Critical path analysis enables a trade-off between

clock period and latency. For example, the number of

division stages can be reduced to half without penalty in

the original critical path because it is located in the non-

optimized granules counter module.

Considering a latency of 12 clock cycles (?1 if the

optimization is performed) for 8-bit precision activity

indexes, it is clear that this implementation can be used for

very challenging real-time applications. In the optimized

Virtex-6 implementation a throughput of about 1,000 fps

can be obtained for 512 9 512 frames using a single

device.

Table 4 shows first-order estimations of power and

energy consumption obtained by using Xilinx Xpower tool.

This analysis only includes the consumption of the FPGA

core at 1V. The external load and the I/O consumption are

not considered. The circuit frequency is 250 MHz (i.e., a

period of 4 ns) for the estimation. As the proposed circuit is

rather small and hence the consumed area in the FPGA is

small, almost all the power and energy consumption is due

to leakage current. In fact these values are much lower than

the ones obtained using general purpose computers.

Table 3 Implementation

results on FPGA (Virtex-6

Family). The precision of the

activity index is 8 bits

#inst 64 128

128 9 128

tp (ns) 4.02 4.04

tp,opt (ns) 3.48 3.48

#ff 311 331

#LUT 377 398

#RAMB 4 ? 3 5 ? 2

256 9 256

tp (ns) 4.86 4.87

tp,opt (ns) 3.52 3.52

#ff 319 334

#LUT 397 416

#RAMB 20 ? 1 22 ? 1

512 9 512

tp (ns) 5.42 5.43

tp,opt (ns) 3.52 3.52

#ff 329 349

#LUT 404 423

#RAMB 80 ? 1 88 ? 1
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6 Conclusions

The speckle activity descriptor FGD, whose efficacy has

been previously reported to identify both stationary and

non-stationary dynamics, was reformulated as the RFGD to

improve its computational performance in a digital circuit

implementation. The RFGD descriptor is presented at dif-

ferent levels of abstraction, from a mathematical descrip-

tion in Sect. 2, to an algorithm expressed as pseudo-code in

Sect. 3, and finally the corresponding digital circuit as a

portable HDL description in Sect. 4.

The designed circuit is developed by a portable

description in a hardware description language (HDL).

While the circuit is implemented on a specific FPGA

technology, it can be synthesized on FPGAs of other

vendors and VLSI.

Since the proposed algorithm is of low computational

cost, the corresponding digital circuit is designed using a

small and pipelined circuitry, consisting of 1 adder, 6

comparators, and an additional logic level for the switch

zone logic in the granules computation module, and 9

subtractors and 9 multiplexers for the division module.

Therefore, the circuit can perform high-speed granular

computing of Np THSP signals provided by a camera in

real time. Although the data path is small and pipelined, the

circuit needs access to a memory whose size depends on

image size and the number of processed frames. Thus, best

results are obtained if this memory can be implemented on-

chip, which is the case in the presented experimental

results. The modules to obtain the histogram and to com-

pute the region limits are less important in the timing

analysis because they are involved only in the preset stage.
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