
Design of a Smart Lock on the Galileo Board

Matias Presso, Diego Scafati, José Marone
Fac. de Ciencias Exactas, Univ. Nacional del Centro de la

Provincia de Buenos Aires, Argentina
marone@exa.unicen.edu.ar

Elías Todorovich
Univ. Nacional del Centro de la Pcia. de Bs. As. and

Universidad FASTA, Argentina
etodorov@exa.unicen.edu.ar

Abstract—In this work, a WiFi enabled door lock allows
users to lock or unlock doors by codes that are managed
from a computer or phone where new codes are issued or
deleted including temporary codes to guests or office
personnel. This work demonstrates an efficient smart lock
system that can be configured remotely using Intel Galileo
boards. The on-board server is connected through a mini-
PCIe Wi-Fi card supported by Galileo. The Web server
provides real-time information to remote administration
regarding interesting events on the smart lock in the form
of a responsive webpage. In addition, all the source code of
the project is open and available for developers.

Keywords—smart lock; open source; Intel Galileo; IoT

I. INTRODUCTION
Internet has evolved from connecting computers to

connecting IP-enabled things that can be employed for real
time remote monitoring in the Internet of Things (IoT).

Between 2013 and 2014, Intel donated 50,000 Galileo
boards to about 1,000 universities worldwide. This
development board is compatible with Arduino to enable
university students to innovate in the IoT. One of the impacts
of this large-scale donation is a number of papers published
with designs and applications related to IoT. For example, [1]
demonstrates a method of real time remote monitoring of
environmental parameters using Intel Galileo. In this method,
an on-board server is connected to the Wi-Fi router that acts as
a gateway for this network. The Web server provides the real
time sensor information with dynamic updates in the form of a
webpage to the remote client. Another application is a fall
detection system for the elderly [2].

Connected devices and the related IoT technologies
generate various smart embedded products that can be used in
diverse applications, like home automation systems. A smart
lock is one of the most important parts of a smart home.
Authors in [3] present a smart lock system focusing on
security issues. In a relatively older work [4], a ZigBee
module is embedded in the digital door lock and the door lock
acts as a central main controller of the overall home
automation system.

The goal in this open source project is to develop an
efficient smart-lock system using essentially a Galileo board.

A. Intel Galileo
Intel Galileo is the first in a line of Arduino-certified

development boards based on Intel x86 architecture and is
designed for the maker and education communities [5]. This
project uses the first of the two Galileos, referred to as Gen 1,
which was released in October 2013. Galileo runs a Linux
operating system with the Arduino software libraries, so that
existing "sketches" run on Galileo’s processor. The board is
also designed to be hardware and software compatible with the
Arduino shield ecosystem (See Fig. 1). It can also be
programmed by the Arduino software development
environment (IDE) and libraries.

The 32-bit Quark SoC X1000 chip in Galileo is an attempt
by Intel to compete within the IoT market. It is a single core,
single thread processor based on an x86 Pentium design, and it
runs at a clock speed of 400MHz. It has 512KB of embedded
RAM and a 16 KBytes on-die L1 cache.

Galileo storage includes a programmable 8MB NOR flash,
whose main purpose is to store the firmware (or bootloader)
and the latest sketch, and a 256MB DRAM. Other key features
include a micro-SD connector slot for cards of up to 32GByte
of storage, a 10/100Mbps (bits per second) Ethernet port, a
mini PCI-Express slot, a USB 2.0 host connector, and an RS-
232 serial port connected via a 3.5mm jack. The USB Device
ports allow for serial (CDC) communications over USB. This
provides a serial connection to the Serial Monitor in the
Arduino IDE.

Fig.1. Intel Galileo board front

mailto:marone@exa.unicen.edu.ar
mailto:etodorov@exa.unicen.edu.ar

II. SMART LOCK
A smart or internet-controlled lock is useful for rental

properties, home, apartment complexes, fraternities, or office
use. This is a WiFi enabled door lock that allows users to lock
or unlock doors remotely by a code, know when people unlock
the door, and receive text alerts when codes are used. Door
lock is managed from a computer or phone where new codes
are issued or deleted including temporary codes to guests or
office personnel. Some models include a keypad to enter a
code and others simply let you use your phone to open and
close doors (See Fig. 2).

One of the problems related to remotely managing
property access is key exchange. Although it has associated
copying and personnel costs, it can cause the disruption of
early check-ins and overstays. In addition, there are security
risks of unauthorized access. To solve this problem some
internet-controlled lock companies even offer online
integration with apps from hospitality service providers such
as Airbnb.

Small business smart-locks using WiFi allow owners to
remotely monitor and control access, to view history logs of
employee access, and even to make sure doors are locked.

These locks are useful for office suites, health facilities, space
sharing offices, interior offices, and utility rooms.

Many smart locks offer a mobile app that allows users to
lock and unlock doors with a simple icon tap. Some offer a
Web app that lets you control things from your desktop or
laptop PC. These apps let you add permanent and temporary
users and set access schedules for specific days and times.

The latest smart locks offer features like voice activation,
auto-locking features, keyless touchpads for those times when
you don't have your phone or your keys, and tamper and
forced entry alarms that warn you of a possible break-in, and
push, text, and email notifications that let you know who is
coming and going in real-time. Some locks also integrate with
other connected home devices. For example, you can have
your doors unlocked ‘when a smoke or CO alarm is triggered,
or have certain smart lights turned on when a door is
unlocked. You can even pair your lock with a connected
doorbell cam, so you can see who is at the door before you
unlock it.

Although there are several smart locks in the market, there
are still two obvious reasons to develop an open source
solution. One is the price, and the other is that those products
have proprietary software and hardware.

III. DEVELOPMENT
Readers can download and study the source code and a

step-by-step guide (in Spanish) [6] to implement this system in
a Galileo board. This section explains the architecture and
design of the system, to help readers not only to understand
how the project works but also to be able to extend or modify
this open source system.

Fig. 3. UML use case diagram with the specification of the smart lock functionality.

Fig. 2. Smart locks.

A. Specification
For the smart lock defined for this project, there are two

types of actors: on the one hand, the "users" who will use the
lock to open the door and access the restricted site; on the
other hand, the "administrators" who configure virtual keys
and access date and times, and monitor the operation (see
when and who open or close the door, etc.).

Users receive a code or virtual key by some text messaging
service. Then, they can enter this code to unlock the door.
Administrators can add codes and associate them to users and
a time period, delete or disable codes, and see the logs. Logs
show a list of users and timeststamps when the door was
unlocked, when it was opened, closed or locked, and the time

when an invalid code was attempted. Fig. 3 shows the smart
lock functionality in an UML use case diagram.

Two additional functionalities were added, a display of the
the current door status, and the possibility of synchronizing
the internal clock in the smart lock by means of the web
interface.

B. Architecture and Design
In this project, the Linux operating system (OS) running

on the Galileo boards is used several times. This is one of the
most important features of these cards. The OS can be
accessed from Arduino sketches through system calls, i.e., the
system() method, for example, to set up the WiFi card:

Fig. 4. Smart lock architecture.

Fig. 5. Smart lock FSM.

system("connmanctl enable wifi");

Although security is one of the biggest IoT challenges, it is
not a specific design issue considered in this article. However,
as the system is running on a Linux OS, we encourage
designers to apply at least the basic security measures such as
changing root password, regularly updating packages and
firmware, adding a domain name and SSL certificate to their
board, among others.

Two forms of storage are observed in Fig. 4. SQLite is
used for storing the keys and schedules in a persistent way.
SQLite databases are stored as files in the filesystem, making
it available after restarting the hardware (persistence). The
problem with this kind of storage is the low performance
retrieving results, in terms of response time. To improve the
overall performance and speed up the response time to user
operations, we decided to use Redis, an in-memory storage
system. Redis is used to keep the keys in memory so that
accesses can be validated quickly, delegating SQLite to the
task of keeping the persistence of the data and working in an
asynchronous way (without delaying the response time when
possible). Other advantages of using Redis are its simple
usage (no SQL queries are required) and its integration within
all the technologies involved in the project, i.e, a variable
stored in Redis can be read from a Perl script, a JS script, or
the main .ino script. In other words, Redis is also used as a
centralized repository for storing and sharing variables
between programs in the OS. The SQLite database contains
only two tables, one to store the codes and another to keep a
record of the performed actions. Fig. 4 also illustrates the

Arduino code in execution as well as a web server in NodeJs
(javascript). Intermediate scripts in Perl are used to access
persistence options from Arduino (Redis / SQLite).

Fig. 5 shows the finite state machine (FSM) implemented
as a sketch in Arduino and running on the Galileo board.
When a user enters a digit using the keypad, the FSM goes
from locked to writing-key state. After the user enters a 4-digit
key, the FSM goes to the validating state, and then to error or
unlocked state if the code is valid compared with the codes in
the database. Finally, from the unlocked state, the FSM goes to
open state when the user opens the door. Main state transitions
are registered in a log.

C. Implementation
This system requires OS services that are not provided by

the Linux embedded in the Galileo Board. Fortunately, Intel
made available and maintains different Board Images based on
the Yocto project (Linux) for extending the capabilities of the
board. These custom distributions include drivers and an
environment which can contain Redis, NodeJS, Perl, and/or
other pre-installed tools and code interpreters, making them an
excellent option for projects like this. For our particular
project, we used the "Intel® IoT Developer Kit v1.5 Intel®
Galileo Board Image".

A mini-PCIe WiFi card Atheros ar5b225 is used. This card
is reused; it comes from a laptop that is out of service.
However, the Intel® Centrino® Wireless-N 135 and Intel®
Centrino® Advanced-N 6205 would be better options as they
work with any Linux image provided by Intel.

Fig. 6. Keypad connection

Fig. 7. Front-End / Back-End Tools and Technologies Ecosystem

On Arduino cards, the connection from the keypad outputs
to the card is direct because the Arduino pins provide internal
pull-up resistors, but in this project pull-up resistors were
added to avoid glitches, as shown in Fig. 6.

Regarding Arduino programming, the sketch mainly
consists of the implementation of the FSM shown in Fig. 5.
The FSM library for Arduino is used to implement the FSM
states and transitions between states in an organized way. All
these states expect an enter, an update, and an exit callback
function.

Fig. 7 summarizes front-end and back-end tools and
technologies used for the project development. NodeJs [8] is
used and configured as a lightweight server application. Due
to its single-threaded architecture, it minimizes memory usage
and avoids the cost of context-switching between threads.
These reasons make it an ideal tool for real-time tasks and

GPIO (general purpose input and output) interaction. Bower
[9] and Grunt [10] are used as front-end development tools.
The former for frameworks, libraries, assets, utilities, and
dependencies management, and the latter for tasks automation.
Both tools allow a modular development, and ease updating,
maintenance and application debug. Bootstrap [11] was
included as responsive front-end framework and SQLite [12]
as database engine.

Redis [13] is an efficient in-memory key-value database
open-source software. Many languages have bindings to Redis
such as the ones used in this project JavaScript (Node.js) and
Perl.

Figs. 8, 9 and 10 show the web application and database
queries for Admin Log, Admin Dashboard, and Password
Administration, respectively.

Fig. 8. Admin Log Screenshot

Fig. 9. Admin Log Dashboard

Fig. 10. Pass Admin Screenshot

IV. CONCLUSION
A complete smart lock open-source system is implemented

on a Galileo gen 1 development board. This means that system
administrators can access the web server running on the board
itself, and the users can enter codes that are validated by on-
board software too.

Authors provide a step-by-step guide to install and test the
system. Besides, developers around the world can extend and
modify the available source code with minimum complexity.
Although this is the first available version of the proposed
system, its architecture enables modular development,
management, automation, and eases updating and maintenance
by means of stable, professional, and widely accepted
software tools.

ACKNOWLEDGMENT
Authors would like to thank: Intel Corporation for their

support by providing Intel Galileo boards under Intel –
University donation program as part of Intel higher education
to the UNICEN, Argentina, and FASTA University,
Argentina, and CIC PBA where M.P. belong to the
Professional Staff.

REFERENCES
[1] J.J. Livingston, and A. Umamakeswari, "Internet of Things Application

using IP-enabled Sensor Node and Web Server," Indian Journal of
Science and Technology [Online], 8.S9 (2015), pp. 207-212.

[2] G. E. De Luca, E. A. Carnuccio, G. G. Garcia and S. Barillaro, "IoT fall
detection system for the elderly using Intel Galileo development boards
generation I," 2016 IEEE Congreso Argentino de Ciencias de la
Informática y Desarrollos de Investigación (CACIDI), Buenos Aires,
2016, pp. 1-6.

[3] A. Kassem, S. E. Murr, G. Jamous, E. Saad and M. Geagea, "A smart
lock system using Wi-Fi security," 2016 3rd International Conference on
Advances in Computational Tools for Engineering Applications
(ACTEA), Beirut, 2016, pp. 222-225.

[4] Y. T. Park, P. Sthapit and J. Y. Pyun, "Smart digital door lock for the
home automation," TENCON 2009 - 2009 IEEE Region 10 Conference,
Singapore, 2009, pp. 1-6.

[5] Miguel de Sousa, Internet of Things with Intel Galileo, Packt Publishing,
2015.

[6] Diego Scafati, “Guía paso a paso: Cerradura digital con código en
Galileo”, available in: https://github.com/dscafati/arduino-electronic-
door-lock

[7] Scott Rifenbark, “Yocto proyect mega-manual”, available in:
http://www.yoctoproject.org/docs/2.2.1/mega-manual/mega-
manual.html

[8] Galileo Tutorial Networking and node.js Senzations 2014, Jason Wright,
available in:
http://senzations.net/wp-content/uploads/2014/66/Senzations14-
Networking-nodejs.pdf

[9] Bower Package for the Web, https://bower.io/docs/config/
[10] Grunt Javascript Task Runner, https://gruntjs.com/configuring-tasks
[11] Bootstrap Responsive Framework, http://getbootstrap.com/getting-

started/
[12] SQLite Documentation, https://www.sqlite.org/docs.html
[13] Redis Documentation, https://redis.io/documentation

https://github.com/dscafati/arduino-electronic-
http://www.yoctoproject.org/docs/2.2.1/mega-manual/mega-
http://senzations.net/wp-content/uploads/2014/66/Senzations14-
https://bower.io/docs/config/
https://gruntjs.com/configuring-tasks
http://getbootstrap.com/getting-
https://www.sqlite.org/docs.html
https://redis.io/documentation

