Carrera: Licenciatura en Higiene y Seguridad en el Trabajo

PROYECTO FINAL INTEGRADOR

Identificación, Análisis y Evaluación de Riesgos Laborales en Centrales Termoeléctricas.

Titular Cátedra: Ing. Carlos Nisenbaum

Dirección Profesor: Ing. Jorge Niklison

Alumno: Sandra Ruiz

Centro Tutorial: Tucumán – Yerba Buena
CONTENIDO

CAPITULO 1: PRESENTACION DEL PROYECTO FINAL INTEGRADOR........... 5

1.1. TITULO DEL PROYECTO... 5
1.2. DESCRIPCION DEL PROYECTO... 5
1.3. OBJETIVOS... 5
1.4 METODOLOGIA.. 6
1.5 DESCRIPCION DE LA EMPRESA – RESEÑA HISTORICA.......................... 6
1.6 DESCRIPCION DEL PROCESO DE GENERACION TERMOELECTRICA 11
1.7 PLANOS ESQUEMATICOS DE LA EMPRESA.. 12

CAPITULO 2: ELECCION DEL PUESTO DE TRABAJO................................. 17

2.1. ANALISIS Y DESCRIPCION DEL PUESTO DE TRABAJO...................... 17
2.2. IDENTIFICACION DE LOS RIESGOS... 18
2.3. EVALUACION DE LOS RIESGOS:... 21
2.4. ANALISIS ERGONOMICO DEL PUESTO DE TRABAJO DE OPERADOR
 DE CAMPO.. 24
 2.4.1. METODO LEST .. 24
 2.4.2. METODO REBA ... 28
2.5. SOLUCIONES TECNICAS Y/O MEDIDAS CORRECTIVAS........................ 43
2.6. ESTUDIO DE COSTOS DE LAS MEDIDAS CORRECTIVAS.................... 49

CAPITULO 3: ANALISIS DE LAS CONDICIONES GENERALES DE TRABAJO EN
LA ORGANIZACION .. 67

3.1. PROTECCION CONTRA INCENDIOS... 74
 3.1.1. INTRODUCCION... 74
 3.1.2. ANALISIS, EVALUACION Y CUANTIFICACION DEL RIESGO........... 77
 3.1.3. ESTRATEGIA E INTERVENCION SOBRE EL RIESGO.................... 80
3.2. ERGONOMIA... 80
 3.2.1. INTRODUCCION... 80
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.</td>
<td>ANALISIS, EVALUACION Y CUANTIFICACION DEL RIESGO</td>
<td>82</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>ESTRATEGIA E INTERVENCION SOBRE EL RIESGO</td>
<td>99</td>
</tr>
<tr>
<td>3.3.</td>
<td>FACTORES PSICOSOCIALES</td>
<td>103</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>INTRODUCCION</td>
<td>103</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>ANALISIS, EVALUACION Y CUANTIFICACION DEL RIESGO</td>
<td>105</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>ESTRATEGIA DE INTERVENCION SOBRE EL RIESGO</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>CAPITULO 4: PROGRAMA INTEGRAL DE PREVENCIÓN DE RIESGOS</td>
<td>110</td>
</tr>
<tr>
<td>4.1.</td>
<td>PLANIFICACION Y ORGANIZACIÓN DE LA SEGURIDAD E HIGIENE</td>
<td>110</td>
</tr>
<tr>
<td>4.2.</td>
<td>SELECCIÓN E INGRESO DE PERSONAL</td>
<td>111</td>
</tr>
<tr>
<td>4.3.</td>
<td>CAPACITACION EN MATERIA DE S.H.L</td>
<td>115</td>
</tr>
<tr>
<td>4.4.</td>
<td>INSPECCIONES DE SEGURIDAD</td>
<td>120</td>
</tr>
<tr>
<td>4.5.</td>
<td>ESTADISTICA E INVESTIGACION DE ACCIDENTES LABORALES</td>
<td>122</td>
</tr>
<tr>
<td>4.6.</td>
<td>ELABORACION DE NORMAS DE SEGURIDAD</td>
<td>135</td>
</tr>
<tr>
<td>4.7.</td>
<td>PREVENCIÓN DE ACCIDENTES “IN ITINERE”</td>
<td>135</td>
</tr>
<tr>
<td>4.8.</td>
<td>PLANES DE EMERGENCIA</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>CONCLUSIONES</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>AGRADECIMIENTOS</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAFIA</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>ANEXOS</td>
<td>163</td>
</tr>
</tbody>
</table>

ANEXO I: Método NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente", del INSHT. | 163 |
ANEXO II: Cuestionarios de chequeo – NTP 324 | 170 |
ANEXO III: Método LEST – Tablas de valoración | 206 |
ANEXO IV: Cuestionario observación Método Lest – Operador de Campo | 220 |
ANEXO V: Planilla de asistencia Capacitaciones | 235 |
Capítulo 1: Presentación del Proyecto Final Integrador

1.1. Título del Proyecto

Identificación, Análisis y Evaluación de Riesgos Laborales en Centrales Termoeléctricas.

1.2. Descripción del Proyecto

El Proyecto comprende el análisis de las actividades del Operador de Campo y de las condiciones generales de trabajo en Sala de Control de las Centrales Termoeléctricas de la Empresa YPF Energía Eléctrica S.A; identificando los factores que constituyen un riesgo para la salud o atenten contra la integridad física del trabajador.

A continuación se proponen las mejoras correspondientes a las condiciones inseguras detectadas y se confeciona un Programa integral de Prevención de Riesgos Laborales como una estrategia de intervención referida a la planificación, organización y gestión.

En todas las fases del Proyecto se toma como referencia los aspectos legales, normativa y legislación vigente.

Normativa de aplicación (Legislación)

- Ley 19.587 - Ley de Higiene y Seguridad en el trabajo
- Decreto 351/79 - Reglamentario de la Ley 19.587
- Ley 24.557 – Ley de Riesgos del Trabajo.

1.3. Objetivos

Objetivos Generales

- Identificar, analizar y evaluar los riesgos laborales y su incidencia en la Seguridad Industrial y Salud Ocupacional.

Objetivos Específicos
Identificar los factores de riesgos en las actividades del Operador de campo, para eliminar y/o reducir los mismos a un valor aceptable, garantizando la seguridad y calidad de vida de los trabajadores.

Analizar las condiciones y medio ambiente de trabajo en la Sala de Control e identificar y evaluar los riesgos preponderantes.

Proponer un Programa integral de Prevención de Riesgos en conceptos de Seguridad y Salud Ocupacional.

1.4 METODOLOGIA

Este Proyecto se encuentra enmarcado en la modalidad de Investigación de Campo y consiste en la recolección de datos directamente de las personas investigadas y del lugar donde ocurren los hechos (datos primarios) sin manipular o controlar ninguna variable.

Al ser un trabajo de campo, la información necesaria para el análisis de los elementos se recolectará directamente en la empresa YPF Energía Eléctrica S.A.

Cabe destacar que el nivel de investigación es de carácter descriptivo y se pretende describir la naturaleza de una situación tal como existe en el momento del estudio.

En este trabajo, el instrumento de recolección de datos utilizado será el cuestionario de preguntas. El mismo se realizará al personal del turno diurno y nocturno, ya que cada turno presenta particularidades distintas, considerando en el proceso, la participación de la mayor cantidad de trabajadores del puesto de trabajo.

1.5 DESCRIPCION DE LA EMPRESA – RESEÑA HISTORICA

A finales de los ‘90 el país vivía una crisis energética de tal magnitud que se debía aplicar, en los períodos de alta demanda; cortes rotativos a todos los usuarios, básicamente por falta de capacidad instalada de Generación.

A partir del año 1992 se privatiza el Sector Eléctrico con la Ley 24.065 y desde entonces Mercado Eléctrico Mayorista de Energía (MEM), se separa
en: Transporte, Distribución, Generación, Comercialización y Grandes Usuarios.

Esta ley estableció el concepto de que el precio de la Energía lo fijaba la Máquina que satisfaga el próximo MW (Mega Wats) de demanda. Entre los años 1993 y 2002 se instalaron aproximadamente 9.500 MW nuevos (mayormente térmicos) aunque no hubo el mismo nivel de expansión en gasoductos y líneas transportadoras. Esto produjo una serie de inversiones en Generación, lo que permitió recuperar en pocos años el parque de Máquinas, recuperando las reservas de energía.

La instalación de Centrales Termoeléctricas en la localidad El Bracho – Provincia de Tucumán, data de 1995. En ese período se instalaron:

- **Central Ave Fénix**: conformada por seis Turbinas de gas marca General Electric, modelo LM 6000, con una generación individual de 47 MW y operadas por la empresa PIC Energy.

- **Central San Miguel**: conformada por una Turbina de Gas marca General Electric, modelo PG 917, con una generación de 110 MW, operada por la Empresa General Electric.

- **Central Tucumán**: que consta de un Ciclo Combinado compuesto por dos Turbinas de Gas marca SIEMENS modelo V94.2, con una generación de 156MW, dos calderas NOOTER/ERIKSEN asociadas cada una a cada turbina de gas y una turbina de vapor GE de 157MW, completando una generación total de 447 MW, operada por la Empresa Stewart &Stevenson.

En el año 2001 las Empresas Pluspetrol Energy y Pluspetrol S.A adquieren las tres Centrales de generación, tomando la Operación y el Mantenimiento de las mismas e invierten 480 MU$S en nuevas instalaciones incrementando la potencia instalada. Las inversiones realizadas fueron las siguientes:

- **Central Ave Fénix**: se reemplazan las seis turbinas de gas modelo LM 6000 de la Central Ave Fénix, por dos Turbinas gas General Electric modelo PG 917, con una generación total de 117 MW, alcanzando una generación total de 234 MW.
- **Central San Miguel**: se completa el Ciclo Combinado de la Central San Miguel instalando; instalando una turbina de gas marca General Electric, modelo PG 9171E, dos calderas de recuperación, marca HMI y una Turbina de Vapor provista por la Empresa ALSTOM POWER, alcanzando una generación total de 374 MW.

Con estas nuevas inversiones, en el año 2001 la potencia instalada del Polo energético en El Bracho alcanza los 1.055 MW.

Luego de la crisis económica del 2001 y la pesificación, comienza a invertirse la relación oferta/demanda en el Mercado Eléctrico. Las tarifas eléctricas quedaron pesificadas y gran parte de los costos de mantenimiento siguieron dolarizados.

La demanda de energía comenzó a crecer en el orden del 7-8% anual y desde entonces no hay nuevas inversiones importantes en Generación, produciendo esto un paulatino descenso de las reservas, estimándose que el sistema pueda llegar a operar sin reservas.

La falta de gas, el alto costo de los combustibles alternativos, el crecimiento de la demanda, las tarifas subsidiadas y la inminente falta de reservas en el sistema, llevaron al Estado a intervenir fuertemente en el Mercado, sancionando Resoluciones que fueron recortando los ingresos de los Generadores, asignando gas por corte de exportación y obligando a los Generadores a invertir compulsivamente parte de sus ingresos en nueva generación, en "sociedad" con el estado Nacional.

El Mercado Eléctrico pasó de los paradigmas de los 90 que eran: abastecimiento, reservas óptimas, exportación a Brasil y calidad, a la realidad actual, que es solamente abastecer la demanda.

El negocio de la Energía se encuentra fuertemente regulado con alta intervención del Estado.

El Polo energético instalado en El Bracho no escapa a esta situación y en 2013 YPF Energía Eléctrica S.A adquiere las Centrales Tucumán y San Miguel y desde entonces tiene a su cargo la Operación y el Mantenimiento de las mismas:

Ciclo Combinado Central Térmica Tucumán: por su ubicación, asegura la conexión no sólo al sistema nacional de 500 KV, sino también a la red local
del NOA (Trasnoa) en 132 kV. Utiliza como combustible el gas natural proveniente de gasoductos del norte argentino y Bolivia, y cuenta con dos turbinas de gas de 145 MW cada una y un turbo vapor de 150 MW.
Potencia final: 447 MW (Mega Wats).

Ciclo Combinado Central Térmica San Miguel de Tucumán: también se encuentra en la localidad de El Bracho, ubicada a 500 metros de la Central Térmica Tucumán y de la Estación Transformadora El Bracho Transener S.A. y cuenta con dos turbinas de gas de 110 MW y 117 MW cada una y un turbo vapor de 147MW.
Potencia final: 374 MW.

Cada Ciclo Combinado genera energía eléctrica a través de dos turbinas de gas, dos calderas de recuperación y una turbina de vapor. El calor de los gases de escape de las turbinas de gas se recupera en las calderas, las cuales generan vapor para alimentar un generador de vapor. El resultado de esto es un aprovechamiento más eficiente del gas natural consumido, alcanzándose rendimientos del 50%.

Desde el Complejo de Generación Tucumán, se aporta el 5% de la energía consumida en la Argentina (casi el 40% del noroeste argentino). La generación total es de 821 MW. El equipo de trabajo está integrado por 85 empleados.

YPF Energía Eléctrica S.A, certificó la norma ISO 14001 “Sistema de Gestión Ambiental- Especificaciones y Directivas para su uso” y las normas OHSAS 18001 “Sistema de Gestión de la Seguridad y Salud Ocupacional”.

A continuación se adjunta el Organigrama de la Empresa:
1.6 DESCRIPCION DEL PROCESO DE GENERACION TERMOELECTRICA

Cada Ciclo Combinado dispone de una Planta Reguladora, donde el gas natural ingresa a una presión máxima de 60 kg/cm2 (en condiciones operativas normales ingresa a unos 45 kg/cm2), y disminuye su presión a 25 kg/cm2, según necesidad de los turbogeneradores.

En la Planta reguladora, también se realiza el tratamiento del gas, despojándolo de impurezas y fracciones líquidas, y puede llevarse el registro del gas consumido en la Central.

La corriente de gas natural acondicionado, regulado y medido, se suministra a las Turbinas de Gas, previamente el gas atraviesa un puente de medición, que permite registrar el consumo por equipo.

El caudal de gas que ingresa a cada Turbina de Gas (aproximadamente 35,000 (N) m3/h) se quema en presencia de aire, en una Cámara de Combustión diseñada para este fin. El aire es purificado previamente pasando por un filtro y luego comprimido.

La energía de los gases de combustión se utiliza para mover los alabes que se encuentran fijos al eje del rotor de la Turbina de Gas, que a su vez, está acoplado con el rotor del generador, obteniéndose una generación de 117 MW en cada equipo.

Los gases de escape de las Turbinas de gas se aprovechan para circular a través de dos calderas de recuperación, generando vapor.

Este vapor se utiliza en la Turbina de Vapor la cual tiene su correspondiente generador acoplado, completando de esta forma el Ciclo Combinado.

Próximas y asociadas a las Turbinas de gas y de vapor, están las subestaciones transformadoras, donde se encuentran los transformadores y elementos seccionadores.
1.7 PLANOS ESQUEMATICOS DE LA EMPRESA

A continuación se adjuntan imágenes satelitales del Polo Energético:
Vista aérea de YPF Energía Eléctrica S.A – Complejo de Generación Tucumán
Plano N° 1: Vista Satelital de YPF Energía Eléctrica S.A – Complejo de Generación Tucumán
Central Térmica San Miguel y Central Térmica Tucumán
CAPÍTULO 2: ELECCION DEL PUESTO DE TRABAJO

El propósito de esta etapa del Proyecto es analizar las actividades que desarrolla el Puesto de Trabajo del Operador de Campo; a fin de relevar y evaluar las condiciones laborales desde un punto de vista integral de la seguridad e higiene y proponer las mejoras correspondientes a las condiciones inseguras detectadas.

En el proceso de elección del puesto de trabajo, se consideró que el Operador de campo, tiene un régimen de trabajo de turnos rotativos de 4 días de trabajo de 12 horas y 4 días de descanso, con rotación de turno diurno y nocturno. Los turnos son de 8 a 20 hs y de 20 hs a 8 hs. En cada turno de trabajo; el Operador de Campo debe realizar recorridos para detectar anomalías y tomar datos en campo, generar informes y trabajos administrativos, el 85% de las actividades se desarrollan en Campo y el 15% en Oficina (Sala de Control).

Durante las charlas mantenidas con los Operadores de campo y durante el acompañamiento en sus tareas habituales, se observa que los mismos están expuestos a diversos riesgos y peligros que pueden tener incidencia en su Seguridad y Salud.

Esta etapa del Proyecto comprende:

2.1. ANALISIS Y DESCRIPCION DEL PUESTO DE TRABAJO.

En el Puesto de trabajo de Operador de campo de YPF Energía Eléctrica – Complejo de Generación Tucumán, se desempeñan 10(diez) personas, sus edades oscilan entre 25 y 48 años, su formación académica es variable (nivel secundario, terciario y universitario completo) y la antigüedad en el Puesto varía desde 5 a 18 años.

El Operador de Campo desarrolla principalmente actividades en las instalaciones industriales (exterior) y determinadas tareas en Oficina, detalladas a continuación:

Actividades en Campo:

- Realizar ronda operativa para detectar anomalías y tomar datos de variables operativas.
- Manipular químicos (ácido clorhídrico, hidróxido de sodio, ácido sulfúrico, fosfato, aminas, otros) asociados a sistemas de dosificación química.
• Ingresar a sectores de caldera a alturas de hasta 16 metros para realizar maniobras o tomar datos de presión, temperatura, etc.

• Realizar maniobras de válvulas de gas natural (máximo 60 kg/cm²) y vapor (97 kg/cm² y 520 °C) desde tablero o en forma manual.

• Manipular cilindros de gases comprimidos incluyendo hidrógeno

• Verificar presión y temperatura de aceite refrigerante en turbogeneradores y de aceite hidráulico a una presión de 120 bar.

• Ingresar a temperaturas extremas ambientales (desde -2 °C en cortinas de agua y hasta 40 °C).

• Operar con tensión de hasta 500 KV en forma directa al aplicar el procedimiento de bloqueo y rotulado de equipos denominado LOTO (Lock out tag out). Por ejemplo: en operaciones de energizar y desenergizar interruptores.

• Eventualmente operar equipos a alta tensión en forma directa (Ej.: puesta a tierra para el mantenimiento de líneas de alta tensión, maniobras a pie de equipo para normalización del mismo cuando falla el seccionador de 500 KV).

• Conducir vehículos de planta (camioneta, carro eléctrico, montacargas, bicicleta).

Actividades en Oficina (Sala de Control):

• Generar avisos reportando averías / novedades en el Sistema de Gestión de Mantenimiento SAP (Systems Applications Products), empleado en YPF Energía Eléctrica S.A.

• Confeccionar informes y reportes diarios.

2.2. IDENTIFICACION DE LOS RIESGOS

A continuación se realizó un relevamiento general del Puesto de trabajo de Operador de campo de YPF Energía Eléctrica – Complejo de Generación Tucumán, de acuerdo a lo que la legislación vigente exige, identificando los agentes de riesgos a los que se encuentra expuesto.
El Operador de campo en su jornada laboral de 12 horas, desarrolla tres recorridas operativas para relevamiento de datos operativos, maniobras operativas en las unidades de producción necesarias para la operación y el funcionamiento de las mismas, implementación de bloqueo y rotulado de equipos para trabajos de mantenimiento, recepcionar equipos en campo luego de las tareas de mantenimiento y elaborar reportes operativos.

La identificación de los riesgos se realiza en base a las diferentes tareas ejecutadas por el Operador de Campo. (Tabla 1)
IDENTIFICACIÓN DE RIESGOS

EMPRESA: YPF Energía Eléctrica S.A
Complejo de Generación Tucumán
FECHA: 30/07/2015
Realizado por: Ruiz Sandra

<table>
<thead>
<tr>
<th>PUESTOS DE TRABAJO:</th>
<th>TIPOS DE RIESGOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operador de Campo</td>
<td></td>
</tr>
</tbody>
</table>

TAREAS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26		
1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
2										X	X	X																
3											X																	
4																	X				X							
5																X										X		
6																				X								
7																X											X	
8																							X					
9																											X	

DESCRIPCIÓN TIPOS DE RIESGOS

1. **EXPLOSIÓN**
2. **INCENDIO**
3. **RUIDO**
4. **CAÍDAS DE PERSONAS A DISTINTO NIVEL**
5. **CAÍDAS DE PERSONAS AL MISMO NIVEL**
6. **VIBRACIONES**
7. **CHOQUES CON VEHÍCULOS**
8. **ATRAPAMIENTO / APRISIONAMIENTO**
9. **ILUMINACION**
10. **PROYECCION DE FLUIDOS A PRESION**
11. **EXPOSICION A TEMPERATURAS AMBIENTALES EXTREMAS**
12. **RADIACIONES NO IONIZANTES**
13. **RIESGO PSICOSOCIAL**
14. **QUEMADURAS**
15. **RIESGOS ERGOONOMICOS**
16. **CAIDAS DE OBJETOS POR MANIPULACION**
17. **PROYECCION DE HERRAMIENTAS MANUALES**
18. **GOLPES, CORTES O CHOQUES CON OBJETOS**
19. **CAIDAS DE OBJETOS POR DESPRENDIMIENTO**
20. **CAIDAS DE OBJETOS POR DESPLOME**
21. **CONTACTOS ELECTRICOS**
22. **QUEMADURAS POR ARCO ELECTRICO**
23. **PROYECCION DE FLUIDOS A PRESION**
24. **AGENTES QUÍMICOS**
25. **CONTACTOS TÉRMICOS**
26. **ACCIDENTES DE TRANSITO**

Tabla 1: Identificación de riesgos puesto de trabajo Operador de Campo
2.3. EVALUACION DE LOS RIESGOS:

Para el análisis, evaluación y cuantificación de riesgos se utilizará el Método de la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente”, del INSHT. Anexo I.

Método NTP 330 aplicado al Puesto de Trabajo de Operador de Campo

Con los riesgos identificados en el Apartado 2.2 (Tabla 1) para el Puesto de Trabajo de Operador de Campo, se procede a aplicar la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente” y “NTP 324: Cuestionario de chequeo para control de riesgos de accidente” del INSHT (Instituto Nacional de Seguridad e Higiene en el Trabajo, Ministerio de Trabajo y Asuntos Sociales de España). A continuación se describe la metodología:

- Se elaboran los cuestionarios de chequeo sobre cada uno de los factores de riesgo y se asigna el nivel de importancia a cada uno de los factores de riesgo identificados para el Puesto de Trabajo de Operador de Campo conforme a la Nota Técnica “NTP 324: Cuestionario de chequeo para control de riesgos de accidente” (Anexo II)
- Se cumple con los cuestionarios de chequeo en el lugar de trabajo y se estima el nivel de deficiencia del cuestionario aplicado a cada uno de los riesgos identificados para el Puesto de Trabajo (Tabla 2).
Tabla 2: Nivel de deficiencia Puesto de Operador de Campo.

- Se estima el nivel de exposición a los riesgos identificados.
- Se estima el nivel de probabilidad a partir del nivel de deficiencia y del nivel de exposición.
- Se contrasta el nivel de probabilidad a partir de datos históricos disponibles (accidentabilidad).
- Se estima el nivel de riesgo a partir del nivel de probabilidad y del nivel de consecuencias.
- Se establecen los niveles de intervención considerando los resultados obtenidos y su justificación socio-económica.
- Se contrastan los resultados obtenidos con los estimados a partir de fuentes de información precisas y de la experiencia.
En la Tabla 3 se adjuntan los resultados de la Evaluación y cuantificación de riesgos para el Puesto de Operador de campo de YPF Energía Eléctrica – Complejo de Generación Tucumán, empleando el Método “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente”, del INSHT.

<table>
<thead>
<tr>
<th>TAREA</th>
<th>RIESGO</th>
<th>NIVEL DE DEFICIENCIA</th>
<th>NIVEL DE EXPONICION</th>
<th>NIVEL DE PROBABILIDAD</th>
<th>NIVEL DE CONSECUENCIA</th>
<th>NIVEL DE RIESGO</th>
<th>NIVEL DE INTERVENCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPLOSION</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>100</td>
<td>600</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>INCENDIO</td>
<td>DEFICIENTE (6)</td>
<td>3</td>
<td>A-18</td>
<td>100</td>
<td>2000</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>RUIDO</td>
<td>DEFICIENTE (6)</td>
<td>3</td>
<td>A-18</td>
<td>60</td>
<td>1200</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>CAIDAS DE PERSONAS A DISTINTO NIVEL</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>100</td>
<td>600</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>CAIDAS DE PERSONAS AL MISMO NIVEL</td>
<td>DEFICIENTE (6)</td>
<td>3</td>
<td>A-18</td>
<td>25</td>
<td>500</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>VIBRACIONES</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>60</td>
<td>360</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>CHOQUES CON VEHICULOS</td>
<td>MEJORABLE (2)</td>
<td>2</td>
<td>B-4</td>
<td>60</td>
<td>240</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>ATRAPAMIENTO / APRISIONAMIENTO</td>
<td>ACEPTABLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>LUMINACION</td>
<td>ACEPTABLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>PROTECCION DE FLUIDOS A PRESION</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>60</td>
<td>360</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>EXPONICION A TEMPERATURAS AMBIENTALES EXTREMAS</td>
<td>ACEPTABLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>RADICACIONES NO IONIZANTES</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>10</td>
<td>60</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>RIESGO PSICOSOCIAL</td>
<td>DEFICIENTE (6)</td>
<td>4</td>
<td>MA-24</td>
<td>25</td>
<td>600</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>QUEMADURAS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>60</td>
<td>360</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>RIESGOS ERGONOMICOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>60</td>
<td>360</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>USO DE HERRAMIENTAS MANUALES</td>
<td>CAIDAS DE OBJETOS POR MANIPULACION</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>25</td>
<td>150</td>
<td>II</td>
</tr>
<tr>
<td>PROTECCIONES CON HERRAMIENTAS MANUALES</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>25</td>
<td>150</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>GOLPES , CORTES O CHOQUES CON OBJETOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>25</td>
<td>150</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>CAIDAS DE OBJETOS POR DESPREDOMINION</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>25</td>
<td>150</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>PROFESIONAL DE CARGAS SUSPENDIDAS/ MATERIALES ESTIBADOS</td>
<td>CAIDAS DE OBJETOS POR DESPLOME</td>
<td>ACEPTABLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ATRAPAMIENTOS</td>
<td>MEJORABLE (2)</td>
<td>2</td>
<td>B-4</td>
<td>25</td>
<td>100</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>CAIDAS DE OBJETOS POR DESPREDOMINION</td>
<td>MEJORABLE (2)</td>
<td>2</td>
<td>B-4</td>
<td>25</td>
<td>100</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>MANIOBRAS OPERATIVAS EN EQUIPOS ENERGIZADOS Y/O MAQUINAS CON PARTES MOVILES O ROTANTES</td>
<td>CONTACTOS ELECTRICOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>100</td>
<td>600</td>
<td>I</td>
</tr>
<tr>
<td>ATRAPAMIENTOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>60</td>
<td>360</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>GOLPES , CORTES O CHOQUES CON OBJETOS</td>
<td>ACEPTABLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>QUEMADURAS POR ARCO ELECTRICO</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>100</td>
<td>600</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>PROTECCION DE FLUIDOS A PRESION</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>60</td>
<td>360</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>MANIPULACION DE QUIMICOS</td>
<td>AGENTES QUIMICOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>60</td>
<td>360</td>
<td>II</td>
</tr>
<tr>
<td>MANIOBRAS OPERATIVAS EN EQUIPOS Y/O INSTALACIONES CON SUPERFICIES CALIENTES</td>
<td>CONTACTOS TERMICOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>25</td>
<td>150</td>
<td>II</td>
</tr>
<tr>
<td>QUEMADURAS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>25</td>
<td>150</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>BLOCHEO Y ROTULADO DE EQUIPOS</td>
<td>CONTACTOS ELECTRICOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>100</td>
<td>600</td>
<td>I</td>
</tr>
<tr>
<td>QUEMADURAS POR ARCO ELECTRICO</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>100</td>
<td>600</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>ACTIVIDADES DE OFICINA</td>
<td>RIESGOS ERGONOMICOS</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>10</td>
<td>60</td>
<td>III</td>
</tr>
<tr>
<td>RADICACIONES NO IONIZANTES</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>10</td>
<td>60</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>LUMINACION</td>
<td>ACEPTABLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>TRASLADO AL TRABAJO</td>
<td>ACCIDENTES DE TRASLADO</td>
<td>MEJORABLE (2)</td>
<td>3</td>
<td>M-6</td>
<td>100</td>
<td>600</td>
<td>I</td>
</tr>
</tbody>
</table>

Tabla 3: Evaluación de riesgos Puesto de Operador de Campo con Método NTP330

Conclusiones: de acuerdo a los resultados obtenidos en el análisis y cuantificación de los riesgos identificados para el Puesto de Trabajo de Operador de Campo, se observa que los riesgos de: explosión, incendio, ruido, caídas de personas a distinto nivel, riesgo psicosocial, contactos eléctricos, quemaduras por arco eléctrico y accidentes eléctricos representan una ...
situación crítica y requieren corrección urgente. Las soluciones técnicas y/o medidas correctivas correspondientes se desarrollarán en el Apartado 2.5 del Proyecto.

2.4. ANALISIS ERGONOMICO DEL PUESTO DE TRABAJO DE OPERADOR DE CAMPO

Como primera medida, se aplica el Método LEST para evaluar las condiciones de trabajo del Puesto de trabajo del Operador de Campo de la forma más objetiva y global posible, estableciendo un diagnóstico final que indique si cada una de las situaciones consideradas en el puesto es satisfactoria, molesta o nociva y a continuación se realiza un análisis postural sensible para riesgos musculo esqueléticos del Puesto de trabajo, aplicando el Método Reba.

2.4.1. METODO LEST

El objetivo del Método Lest es evaluar el conjunto de factores relativos al contenido del trabajo que pueden tener repercusión tanto sobre la salud como sobre la vida personal de los trabajadores, considerando cada aspecto del Puesto de Trabajo de manera general. No se profundiza en cada uno de esos aspectos, si no que se obtiene una primera valoración que permite establecer si se requiere un análisis más profundo con métodos específicos.

La información que se requiere para aplicar el Método Lest, tiene un doble carácter objetivo-subjetivo. Por un lado se emplean variables cuantitativas como la temperatura o el nivel sonoro, y por otra, es necesario recoger la opinión del trabajador respecto a la labor que realiza en el puesto para valorar la carga mental o los aspectos psicosociales del mismo, por lo cual es necesaria la participación en la evaluación del personal implicado. Las dimensiones y variables consideradas se adjunta en Tabla 4:
<table>
<thead>
<tr>
<th>A) ENTORNO FÍSICO</th>
<th>B) CARGA FÍSICA</th>
<th>C) CARGA MENTAL</th>
<th>D) ASPECTOS PSICOSOCIALES</th>
<th>E) TIEMPOS DE TRABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Vibraciones</td>
<td></td>
<td></td>
<td>14. Relación con el mando</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4: Dimensiones y variables consideradas en la implementación del método

Mediante los datos recogidos durante la observación del Puesto y el empleo de las tablas de puntuaciones del Método (Anexo III), se obtienen las valoraciones de cada variable y dimensión. La valoración obtenida oscila entre 0 y 10 y la interpretación de dichas puntuaciones se realiza según la Tabla 5:

SISTEMA DE PUNTUACIÓN

0, 1, 2	Situación satisfactoria
3, 4, 5	Débiles molestias. Algunas mejoras podrían aportar más comodidad al trabajador
6, 7	Molestias medias. Existe riesgo de fatiga.
8, 9	Molestias fuertes. Fatiga
10	Nocividad

Tabla 5: Sistema de puntuación del método LEST

Dicha valoración se ofrece en forma de histograma, ya que esta representación gráfica permite tener una visión rápida de las condiciones de trabajo y establecer así un primer diagnóstico. Conociendo cuáles son los elementos más desfavorables de las condiciones de trabajo en forma globalizada, se pueden establecer prioridades a la hora de intervenir sobre los distintos factores observados.

A continuación se aplica el Método LEST para la evaluación de las condiciones de trabajo del Puesto de Trabajo del Operador de Campo.

El primer paso es confeccionar la guía de observación, que es un cuestionario donde figuran una descripción de la tarea y una serie de preguntas a modo de indicadores que hacen referencia a las 15 variables consideradas, agrupadas en 5 bloques de información (A, B, C, D y E), relativas al puesto de trabajo. (Anexo IV).

Dicho cuestionario sirve como herramienta de apoyo para la valoración de cada una de las variables utilizando las tablas de puntuaciones del Método Lest. (Anexo III).

A continuación se adjuntan los resultados obtenidos del Método Lest (Tabla 6):
<table>
<thead>
<tr>
<th>DIMENSIÓN</th>
<th>VARIABLE</th>
<th>VALORACIÓN</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTORNO FÍSICO</td>
<td>AMBIENTE TERMICO</td>
<td>7</td>
<td>Nocividad media</td>
</tr>
<tr>
<td></td>
<td>RUIDO</td>
<td>8</td>
<td>Nocividad importante</td>
</tr>
<tr>
<td></td>
<td>ILUMINACION</td>
<td>2</td>
<td>Situación satisfactoria</td>
</tr>
<tr>
<td></td>
<td>VIBRACIONES</td>
<td>2</td>
<td>Situación satisfactoria</td>
</tr>
<tr>
<td>CARGA FÍSICA</td>
<td>CARGA ESTATICA</td>
<td>3</td>
<td>Molestias débiles</td>
</tr>
<tr>
<td></td>
<td>CARGA DINAMICA</td>
<td>3</td>
<td>Molestias débiles</td>
</tr>
<tr>
<td>CARGA MENTAL</td>
<td>APREMIO DE TIEMPOS</td>
<td>6</td>
<td>Nocividad media</td>
</tr>
<tr>
<td></td>
<td>ATENCION</td>
<td>7</td>
<td>Nocividad media</td>
</tr>
<tr>
<td></td>
<td>COMPLEJIDAD</td>
<td>N/A</td>
<td>Nocividad media</td>
</tr>
<tr>
<td></td>
<td>MINUCIOSIDAD</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>ASPECTOS PSICOSOCIALES</td>
<td>INICIATIVA</td>
<td>6</td>
<td>Nocividad media</td>
</tr>
<tr>
<td></td>
<td>COMUNICACIONES</td>
<td>5</td>
<td>Molestias débiles</td>
</tr>
<tr>
<td></td>
<td>RELACIÓN CON EL MANDO</td>
<td>5</td>
<td>Molestias débiles</td>
</tr>
<tr>
<td></td>
<td>STATUS SOCIAL</td>
<td>0</td>
<td>Situación satisfactoria</td>
</tr>
<tr>
<td>TIEMPO DE TRABAJO</td>
<td>TIEMPO DE TRABAJO</td>
<td>8</td>
<td>Nocividad importante</td>
</tr>
</tbody>
</table>

Tabla 6: Método Lest – Puesto de Operador de Campo

Se adjunta también el diagrama de barras correspondiente al análisis

Gráfico 1

![Gráfico 1: Diagrama de barras – Método Lest Operador de Campo](image-url)
Conclusiones:

Con los resultados obtenidos del Método Lest, podemos observar que hay determinadas condiciones presentes en el Puesto de Trabajo de Operador de Campo que pueden afectar a la salud del trabajador:

- **Ambiente térmico:** si bien el Operador de Campo se encuentra expuesto a las temperaturas extremas (frío y calor), ya que la mayor parte de su jornada laboral desarrolla tareas en la intemperie, es un riesgo que se encuentra controlado ya que se puede mitigar con la ropa de trabajo adecuada, brindando espacios climatizados de recuperación y la hidratación correspondiente y como medida organizativa de prevención; se establece que los días de lluvia no se ejecutan tareas de rutina en el exterior.

- **Ruido:** según las mediciones de ruido y el tiempo de exposición relevados durante las tareas de rutina del Operador de Campo, se determina que está expuesto a ruidos superiores de 85 dBA durante 90 minutos aproximadamente en su jornada laboral de 12 hs. En el apartado 2.5 se enuncian soluciones técnicas y medidas preventivas para este riesgo, pero podemos adelantar que se puede mitigar con el uso de los EPP adecuados (doble protección auditiva: tapones y protectores de copa)

- **Apremio de tiempos, Atención e Iniciativa:** en el caso del Operador de Campo se concluye que resulta difícil solucionar o reducir estos riesgos, ya que son propios del Puesto de Trabajo, recordemos que el Operador de Campo es responsable de las maniobras operativas en Campo necesarias para la generación de 400 MW, que provee de energía al 40% del NOA. Se sugiere implementar la realización de los talleres de prevención y control del estrés (dirigida por especialistas).

- **Tiempo de trabajo:** En el apartado 2.5 se enuncian soluciones técnicas y medidas preventivas para este riesgo, considerando se realice un estudio para determinar si el régimen laboral (turnos rotativos de 4 x 4), tiene un efecto negativo sobre la salud de los trabajadores y analizar la posibilidad de implementar otro tipo de régimen laboral.
2.4.2. METODO REBA

Este Método tiene como objetivo:

- Desarrollar un sistema de análisis postural sensible para riesgos musculoesqueléticos.
- Dividir el cuerpo en segmentos para codificarlos individualmente, con referencia a los planos de movimiento.
- Suministrar un sistema de puntuación para la actividad muscular debida a posturas estáticas (segmento corporal o una parte del cuerpo), dinámicas (acciones repetidas, por ejemplo repeticiones superiores a 4 veces/minuto, excepto andar), inestables o por cambios rápidos de la postura.
- Reflejar que la interacción o conexión entre la persona y la carga es importante en la manipulación manual pero que no siempre puede ser realizada con las manos.
- Incluir también una variable de agarre para evaluar la manipulación manual de cargas.
- Dar un nivel de acción a través de la puntuación final con una indicación de urgencia.
- Requerir el mínimo equipamiento (es un método de observación basado en lápiz y papel).

Aplicación del Método Reba - Puesto de trabajo Operador de Campo

Grupo A: Puntuaciones del tronco, cuello y piernas.

El método comienza con la valoración y puntuación individual de los miembros del grupo A, formado por el tronco, el cuello y las piernas.

Puntuación del tronco

El primer miembro a evaluar del grupo A es el tronco. Se deberá determinar si el trabajador realiza la tarea con el tronco erguido o no, indicando en este último caso el grado de flexión o extensión observado. Se seleccionará la puntuación adecuada de la tabla 7.
Figura 1. Posiciones del tronco.

Para el Puesto de Trabajo del Operador de Campo se considera que la posición de tronco es erguido

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El tronco está erguido.</td>
</tr>
<tr>
<td>2</td>
<td>El tronco está entre 0 y 20 grados de flexión o 0 y 20 grados de extensión.</td>
</tr>
<tr>
<td>3</td>
<td>El tronco está entre 20 y 60 grados de flexión o más de 20 grados de extensión.</td>
</tr>
<tr>
<td>4</td>
<td>El tronco está flexionado más de 60 grados.</td>
</tr>
</tbody>
</table>

Tabla 7. Puntuación del tronco.

La puntuación del tronco incrementará su valor si existe torsión o inclinación lateral del tronco.

Figura 2. Posiciones que modifican la puntuación del tronco.

Para el Puesto de Trabajo del Operador de Campo se considera que es factible la torsión.
<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe torsión o inclinación lateral del tronco.</td>
</tr>
</tbody>
</table>

Tabla 8. Modificación de la puntuación del tronco.

Aplicando la Tabla 7 y Tabla 8 para el Puesto de Trabajo del Operador de Campo, se concluye que la **Puntuación del Tronco es igual a 2.**

Puntuación del cuello

En segundo lugar se evaluará la posición del cuello. El método considera dos posibles posiciones del cuello. En la primera el cuello está flexionado entre 0 y 20 grados y en la segunda existe flexión o extensión de más de 20 grados.

![Figura 3. Posiciones del cuello](image)

Para el Puesto de Trabajo del Operador de Campo se considera que la flexión del cuello está entre 0 y 20 grados.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El cuello está entre 0 y 20 grados de flexión.</td>
</tr>
<tr>
<td>2</td>
<td>El cuello está flexionado más de 20 grados o extendido.</td>
</tr>
</tbody>
</table>

Tabla 9. Puntuación del cuello.

La puntuación calculada para el cuello podrá verse incrementada si el trabajador presenta torsión o inclinación lateral del cuello, tal y como indica la tabla 10.
Para el Puesto de Trabajo del Operador de Campo se considera factible la torsión.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe torsión y/o inclinación lateral del cuello.</td>
</tr>
</tbody>
</table>

Tabla 10. Modificación de la puntuación del cuello.

Aplicando la Tabla 9 y Tabla 10 para el Puesto de Trabajo del Operador de Campo, se concluye que la **Puntuación del Cuello es igual a 2**.

Puntuación de las piernas

Para terminar con la asignación de puntuaciones de los miembros del grupo A se evaluará la posición de las piernas. La consulta de la Tabla 11 permitirá obtener la puntuación inicial asignada a las piernas en función de la distribución del peso.

Para el Puesto de Trabajo del Operador de Campo se considera que la posición de las piernas es soporte bilateral, andando o sentado.
La puntuación de las piernas se verá incrementada si existe flexión de una o ambas rodillas. El incremento podrá ser de hasta 2 unidades si existe flexión de más de 60°. Si el trabajador se encuentra sentado, el método considera que no existe flexión y por tanto no incrementa la puntuación de las piernas.

Tabla 12

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe flexión de una o ambas rodillas de más de 60° (salvo postura sedente).</td>
</tr>
<tr>
<td>+2</td>
<td>Existe flexión de una o ambas rodillas entre 30 y 60°.</td>
</tr>
</tbody>
</table>

Aplicando la Tabla 11 y Tabla 12 para el Puesto de Trabajo del Operador de Campo, se concluye que la **Puntuación de las Piernas es igual a 2**.
Grupo B: Puntuaciones de los miembros superiores (brazo, antebrazo y muñeca).

Finalizada la evaluación de los miembros del grupo A se procederá a la valoración de cada miembro del grupo B, formado por el brazo, antebrazo y la muñeca. Cabe recordar que el método analiza una única parte del cuerpo, lado derecho o izquierdo, por tanto se puntuará un único brazo, antebrazo y muñeca, para cada postura.

Puntuación del brazo

Para determinar la puntuación a asignar al brazo, se deberá medir su ángulo de flexión. La figura 7 muestra las diferentes posturas consideradas por el método y pretende orientar al evaluador a la hora de realizar las mediciones necesarias.

En función del ángulo formado por el brazo se obtendrá su puntuación consultando la tabla que se muestra a continuación (Tabla 13).

![Figura 7. Posiciones del brazo.]

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El brazo está entre 0 y 20 grados de flexión ó 0 y 20 grados de extensión.</td>
</tr>
<tr>
<td>2</td>
<td>El brazo está entre 21 y 45 grados de flexión o más de 20 grados de extensión.</td>
</tr>
<tr>
<td>3</td>
<td>El brazo está entre 46 y 90</td>
</tr>
</tbody>
</table>
La puntuación asignada al brazo podrá verse incrementada si el trabajador tiene el brazo abducido o rotado o si el hombro está elevado. Sin embargo, el método considera una circunstancia atenuante del riesgo la existencia de apoyo para el brazo o que adopte una posición a favor de la gravedad, disminuyendo en tales casos la puntuación inicial del brazo. Las condiciones valoradas por el método como atenuantes o agravantes de la posición del brazo pueden no darse en ciertas posturas, en tal caso el resultado consultado en la tabla 13 permanecería sin alteraciones.

Tabla 13. Puntuación del brazo.

<table>
<thead>
<tr>
<th>grados de flexión</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>El brazo está flexionado más de 90 grados.</td>
</tr>
</tbody>
</table>

Figura 8. Posiciones que modifican la puntuación del brazo.

Las posiciones descriptas en la Figura 8 no aplican al Puesto de Trabajo analizado.

Aplicando la Tabla 13 para el Puesto de Trabajo del Operador de Campo, se concluye que la **Puntuación del Brazo es igual a 1.**

Puntuación del antebrazo

A continuación será analizada la posición del antebrazo. La consulta de la tabla 14 proporcionará la puntuación del antebrazo en función de su ángulo de flexión, la figura 9 muestra los ángulos valorados por el método. En este caso el método no añade condiciones adicionales de modificación de la puntuación asignada.

Para el Puesto de Trabajo del Operador de Campo se considera que la posición del antebrazo está flexionada por debajo de 60 grados o por encima de 100 grados.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El antebrazo está entre 60 y 100 grados de flexión.</td>
</tr>
<tr>
<td>2</td>
<td>El antebrazo está flexionado por debajo de 60 grados o por encima de 100 grados.</td>
</tr>
</tbody>
</table>

Tabla 14. Puntuación del antebrazo.

Aplicando la Tabla 14 para el Puesto de Trabajo del Operador de Campo, se concluye que la Puntuación del Antebrazo es igual a 2.

Puntuación de la Muñeca

Para finalizar con la puntuación de los miembros superiores se analizará la posición de la muñeca. La figura 10 muestra las dos posiciones consideradas por el método. Tras el estudio del ángulo de flexión de la muñeca se procederá a la selección de la puntuación correspondiente consultando los valores proporcionados por la Tabla 15.

Figura 10. Posiciones de la muñeca.
Para el puesto de trabajo del operador de campo se considera que la posición de la muñeca está entre 0 y 15 grados de flexión o extensión.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La muñeca está entre 0 y 15 grados de flexión o extensión.</td>
</tr>
<tr>
<td>2</td>
<td>La muñeca está flexionada o extendida más de 15 grados.</td>
</tr>
</tbody>
</table>

Tabla 15. Puntuación de la muñeca.

El valor calculado para la muñeca se verá incrementado en una unidad si esta presenta torsión o desviación lateral (figura 11).

![Figura 11. Torsión o desviación de la muñeca.](image)

Para el puesto de trabajo del operador de campo se considera factible la torsión de la muñeca.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe torsión o desviación lateral de la muñeca.</td>
</tr>
</tbody>
</table>

Tabla 16. Modificación de la puntuación de la muñeca.

Aplicando la Tabla 15 y Tabla 16 para el puesto de trabajo del operador de campo, se concluye que la **Puntuación de la Muñeca es igual a 2.**

Puntuaciones de los grupos A y B.

Las puntuaciones individuales obtenidas para el tronco, el cuello y las piernas (grupo A), permitirá obtener una primera puntuación de dicho grupo mediante la consulta de la tabla mostrada a continuación (Tabla A).

Para el puesto de trabajo del operador de campo consideramos los siguientes valores para obtener la puntuación en la TABLA A:
- Puntuación del Tronco: 2.
- Puntuación del Cuello: 2.
- Puntuación del Piernas: 2.

<table>
<thead>
<tr>
<th>TABLA A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tronco</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1 2 3 4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1 2 3 4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2 4 5 6</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3 5 6 7</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4 6 7 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuello</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1 Piernas</td>
</tr>
<tr>
<td>1 2 3 4</td>
</tr>
<tr>
<td>2 Piernas</td>
</tr>
<tr>
<td>1 2 3 4</td>
</tr>
<tr>
<td>3 Piernas</td>
</tr>
<tr>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Tabla 17. Puntuación inicial para el grupo A.

Para el Puesto de Trabajo del Operador de Campo el valor de **Puntuación inicial para el grupo A es igual a 4** (Tabla 17).

La puntuación inicial para el grupo B se obtendrá a partir de la puntuación del brazo, el antebrazo y la muñeca consultando la siguiente Tabla B.

Para el Puesto de Trabajo del Operador de Campo consideramos los siguientes valores para obtener la puntuación en la TABLA B:

- Puntuación del Brazo: 1.
- Puntuación del Antebrazo: 2.
- Puntuación de la Muñeca: 2.

<table>
<thead>
<tr>
<th>TABLA B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazo</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1 2 2 2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1 2 3 2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3 4 5 2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4 5 6 2</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6 7 8 2</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7 8 8 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antebrazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Muñeca</td>
</tr>
<tr>
<td>1 2 3 1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1 2 3 4 2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3 4 5 4 2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4 5 6 4 2</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5 6 7 4 2</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>6 7 8 4 2</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7 8 8 4 2</td>
</tr>
</tbody>
</table>

Tabla 18. Puntuación inicial para el grupo B.
Para el Puesto de Trabajo del Operador de Campo el valor de **Puntuación inicial para el grupo B es igual a 2 (Tabla 18)**.

Puntuación de la carga o fuerza.

La carga o fuerza manejada modificará la puntuación asignada al grupo A (tronco, cuello y piernas), excepto si la carga no supera los 5 Kilogramos de peso, en tal caso no se incrementará la puntuación. La siguiente tabla muestra el incremento a aplicar en función del peso de la carga. Además, si la fuerza se aplica bruscamente se deberá incrementar una unidad.

En adelante la puntuación del grupo A, debidamente incrementada por la carga o fuerza, se denominará "Puntuación A".

Para el Puesto de Trabajo del Operador de Campo, la **Puntuación A es igual a 4**, ya que no se ve incrementada por la carga o fuerza debido a que la misma es menor a 5Kg (Tabla 19).

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>La carga o fuerza es menor de 5 kg.</td>
</tr>
<tr>
<td>+1</td>
<td>La carga o fuerza está entre 5 y 10 Kgs.</td>
</tr>
<tr>
<td>+2</td>
<td>La carga o fuerza es mayor de 10 Kgs.</td>
</tr>
</tbody>
</table>

Tabla 19. Puntuación para la carga o fuerzas.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>La fuerza se aplica bruscamente.</td>
</tr>
</tbody>
</table>

Tabla 20. Modificación de la puntuación para la carga o fuerzas.

Puntuación del tipo de agarre.

El tipo de agarre aumentará la puntuación del grupo B (brazo, antebrazo y muñeca), excepto en el caso de considerarse que el tipo de agarre es bueno. La tabla 21 muestra los incrementos a aplicar según el tipo de agarre.

En lo sucesivo la puntuación del grupo B modificada por el tipo de agarre se denominará "Puntuación B".
Para el Puesto de Trabajo del Operador de Campo, la Puntuación B es igual a 2, ya que no se ve incrementada porque el agarre es bueno (Tabla 21).

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>Agarre Bueno.</td>
</tr>
<tr>
<td></td>
<td>El agarre es bueno y la fuerza de agarre de rango medio</td>
</tr>
<tr>
<td>+1</td>
<td>Agarre Regular.</td>
</tr>
<tr>
<td></td>
<td>El agarre con la mano es aceptable pero no ideal o el agarre es aceptable utilizando otras partes del cuerpo.</td>
</tr>
<tr>
<td>+2</td>
<td>Agarre Malo.</td>
</tr>
<tr>
<td></td>
<td>El agarre es posible pero no aceptable.</td>
</tr>
<tr>
<td>+3</td>
<td>Agarre Inaceptable.</td>
</tr>
<tr>
<td></td>
<td>El agarre es torpe e inseguro, no es posible el agarre manual o el agarre es inaceptable utilizando otras partes del cuerpo.</td>
</tr>
</tbody>
</table>

Tabla 21. Puntuación del tipo de agarre.

Puntuación C

La "Puntuación A" y la "Puntuación B" permitirán obtener una puntuación intermedia denominada "Puntuación C". La siguiente tabla (Tabla C) muestra los valores para la "Puntuación C".

Para el Puesto de Trabajo del Operador de Campo, considerando la Puntuación A igual a 4 y la Puntuación B igual a 2, se obtiene que la Puntuación C es igual a 4 (Tabla 22).

<table>
<thead>
<tr>
<th>TABLA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puntuación A</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Tabla 22. Puntuación C en función de las puntuaciones A y B.

Puntuación Final

La puntuación final del método es el resultado de sumar a la "Puntuación C" el incremento debido al tipo de actividad muscular. Los tres tipos de actividad consideradas por el método no son excluyentes y por tanto podrían incrementar el valor de la "Puntuación C" hasta en 3 unidades.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Una o más partes del cuerpo permanecen estáticas, por ejemplo soportadas durante más de 1 minuto.</td>
</tr>
<tr>
<td>+1</td>
<td>Se producen movimientos repetitivos, por ejemplo repetidos más de 4 veces por minuto (excluyendo caminar).</td>
</tr>
<tr>
<td>+1</td>
<td>Se producen cambios de postura importantes o se adoptan posturas inestables.</td>
</tr>
</tbody>
</table>

Tabla 23. Puntuación del tipo de actividad muscular.

Para el Puesto de Trabajo del Operador de Campo, la **Puntuación Final es igual a 5**, ya que la Puntuación C se ve incrementada en 1 por el tipo de actividad muscular (Tabla 23).

El Método clasifica la puntuación final en 5 rangos de valores. A su vez cada rango se corresponde con un Nivel de Acción. Cada Nivel de Acción determina un nivel de riesgo y recomienda una actuación sobre la postura evaluada, señalando en cada caso la urgencia de la intervención. El valor del resultado será mayor cuanto mayor sea el riesgo previsto para la postura, el valor 1 indica un riesgo inapreciable mientras que el valor máximo de 15, establece que se trata de una postura de riesgo muy alto sobre la que se debería actuar de inmediato.
<table>
<thead>
<tr>
<th>Puntuación Final</th>
<th>Nivel de acción</th>
<th>Nivel de Riesgo</th>
<th>Actuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Inapreciable</td>
<td>No es necesaria actuación</td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td>Bajo</td>
<td>Puede ser necesaria la actuación.</td>
</tr>
<tr>
<td>4-7</td>
<td>2</td>
<td>Medio</td>
<td>Es necesaria la actuación.</td>
</tr>
<tr>
<td>8-10</td>
<td>3</td>
<td>Alto</td>
<td>Es necesaria la actuación cuanto antes.</td>
</tr>
<tr>
<td>11-15</td>
<td>4</td>
<td>Muy alto</td>
<td>Es necesaria la actuación de inmediato.</td>
</tr>
</tbody>
</table>

Tabla 24. Niveles de actuación según la puntuación final obtenida.

El siguiente esquema sintetiza la aplicación del método.
Cabe recordar que los pasos del Método detallado se corresponden con la evaluación de una única postura. Para el análisis de puestos la aplicación del método deberá realizarse para las posturas más representativas. El análisis del conjunto de resultados permitirá al evaluador determinar si el puesto resulta aceptable tal y como se encuentra definido, si es necesario un estudio más profundo para mayor concreción de las acciones a realizar, si es posible mejorar el puesto con cambios concretos en determinadas posturas o si, finalmente, es necesario plantear el rediseño del puesto.
Conclusiones

El método REBA orientará al evaluador sobre la necesidad o no de plantear acciones correctivas sobre determinadas posturas. Por otra parte, las puntuaciones individuales obtenidas para los segmentos corporales, la carga, el agarre y la actividad, podrán guiar al evaluador sobre los aspectos con mayores problemas ergonómicos y dirigir así sus esfuerzos preventivos convenientemente.

Se observa que en el Puesto de Trabajo de Operador de Campo el nivel de riesgo es medio y es necesaria la actuación y se recomienda realizar un estudio ergonómico del Puesto de Trabajo considerando la resolución del Protocolo de Ergonomía aprobado por la Superintendencia de Riesgos del Trabajo el 22/04/2015, enunciado en el apartado 2.5.

2.5. SOLUCIONES TECNICAS Y/O MEDIDAS CORRECTIVAS.

Con los resultados de la evaluación de riesgos del Puesto de Trabajo del Operador de Campo y considerando los niveles de riesgo y niveles de intervención obtenidos; se proponen recomendaciones prácticas y necesarias, tanto en los aspectos técnicos como de procedimientos y capacitación, a fin de posibilitar la implementación de acciones de prevención y protección que conllevan a la reducción o mitigación de los riesgos existentes a valores aceptables, como asimismo de los potenciales incidentes y/o accidentes que estos puedan causar.
Las soluciones o medidas correctivas planteadas están orientadas a:

- Eliminación del riesgo.
- Protección del trabajador.
- Aislamiento del riesgo

En la Tabla 26 se describen las medidas correctivas propuestas según la numeración asignada en la Tabla 25 y se establece la prioridad de las acciones recomendadas: prioridad “baja” donde la intervención se puede llevar a cabo a mediano plazo extendido, prioridad “media”, donde debe llevarse a cabo a mediano plazo y prioridad “alta” en el cual las acciones deben llevarse a cabo a corto plazo.

Tabla 25. Soluciones técnicas y/o medidas correctivas.

Las soluciones o medidas correctivas planteadas están orientadas a:

- Eliminación del riesgo.
- Protección del trabajador.
- Aislamiento del riesgo

En la Tabla 26 se describen las medidas correctivas propuestas según la numeración asignada en la Tabla 25 y se establece la prioridad de las acciones recomendadas: prioridad “baja” donde la intervención se puede llevar a cabo a mediano plazo extendido, prioridad “media”, donde debe llevarse a cabo a mediano plazo y prioridad “alta” en el cual las acciones deben llevarse a cabo a corto plazo:

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>RIESGO</th>
<th>NIVEL DE RIESGO</th>
<th>NIVEL DE INTERVENCION</th>
<th>MEDIDAS CORRECTIVAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RONDA OPERATIVA EN INSTALACIONES INDUSTRIALES</td>
<td>EXPLOSION</td>
<td>600</td>
<td>I</td>
<td>2, 3, 4, 7, 22</td>
</tr>
<tr>
<td>INCENDIO</td>
<td>2000</td>
<td>I</td>
<td>1, 2, 3, 4, 7, 22</td>
<td></td>
</tr>
<tr>
<td>RUDDO</td>
<td>1200</td>
<td>I</td>
<td>5, 6, 8</td>
<td></td>
</tr>
<tr>
<td>CASI DE PERSONAS A DISTINTO NIVEL</td>
<td>600</td>
<td>I</td>
<td>5, 10, 11, 12, 13, 6, 14</td>
<td></td>
</tr>
<tr>
<td>RIESGO PSICOSOCIAL</td>
<td>600</td>
<td>I</td>
<td>16, 17</td>
<td></td>
</tr>
<tr>
<td>MANIOBRA OPERATIVAS EN EQUIPOS ENERGIZADOS Y/O MAQUINAS CON PARTES</td>
<td>CONTACTOS ELECTRICOS</td>
<td>600</td>
<td>I</td>
<td>13, 18, 19, 20, 21, 22, 6</td>
</tr>
<tr>
<td>QUEMARADURAS POR ARCO ELECTRICO</td>
<td>600</td>
<td>I</td>
<td>13, 18, 19, 20, 21, 22, 6</td>
<td></td>
</tr>
<tr>
<td>BLOQUEO Y RUTILADO DE EQUIPOS</td>
<td>CONTACTOS ELECTRICOS</td>
<td>600</td>
<td>I</td>
<td>13, 18, 19, 20, 21, 22, 6</td>
</tr>
<tr>
<td>QUEMARADURAS POR ARCO ELECTRICO</td>
<td>600</td>
<td>I</td>
<td>13, 18, 19, 20, 21, 22, 6</td>
<td></td>
</tr>
<tr>
<td>TRASLADO AL TRABAJO</td>
<td>ACCIDENTES DE TRANSITO</td>
<td>600</td>
<td>I</td>
<td>15, 25, 26, 27, 28, 6, 13</td>
</tr>
<tr>
<td>RONDA OPERATIVA EN INSTALACIONES INDUSTRIALES</td>
<td>VIBRACIONES</td>
<td>360</td>
<td>II</td>
<td>5, 6, 8</td>
</tr>
<tr>
<td>CHOQUES CON VEHICULOS</td>
<td>240</td>
<td>II</td>
<td>5, 29</td>
<td></td>
</tr>
<tr>
<td>PROYECCION DE FLUIDOS A PRESSION</td>
<td>360</td>
<td>II</td>
<td>5, 36, 31, 32, 13</td>
<td></td>
</tr>
<tr>
<td>QUEMARADURAS</td>
<td>360</td>
<td>II</td>
<td>33, 13, 22, 39, 3</td>
<td></td>
</tr>
<tr>
<td>RIESGOS ERGONOMICOS</td>
<td>360</td>
<td>II</td>
<td>34, 6</td>
<td></td>
</tr>
<tr>
<td>USO DE HERRAMIENTAS MANUALES</td>
<td>CAIADAS DE OBJETOS POR MANIPULACION</td>
<td>150</td>
<td>II</td>
<td>44, 45, 6</td>
</tr>
<tr>
<td>PROYECCIONES CON HERRAMIENTAS MANUALES</td>
<td>150</td>
<td>II</td>
<td>44, 45, 6</td>
<td></td>
</tr>
<tr>
<td>GOLPES - CORTES O CHOQUES CON OBJETOS</td>
<td>150</td>
<td>II</td>
<td>44, 45, 6</td>
<td></td>
</tr>
<tr>
<td>MANIOBRA OPERATIVAS EN EQUIPOS ENERGIZADOS Y/O MAQUINAS CON PARTES</td>
<td>AFRISIONAMIENTOS / ATRAPAMIENTOS</td>
<td>360</td>
<td>II</td>
<td>36, 6</td>
</tr>
<tr>
<td>PROYECCION DE FLUIDOS A PRESSION</td>
<td>360</td>
<td>II</td>
<td>5, 36, 31, 32, 13</td>
<td></td>
</tr>
<tr>
<td>AGENTES QUIMICOS</td>
<td>360</td>
<td>II</td>
<td>36, 37, 38, 6</td>
<td></td>
</tr>
<tr>
<td>MANIOBRA OPERATIVAS EN EQUIPOS Y/O INSTALACIONES CON SUPERFICIES CALIENTES</td>
<td>CONTACTOS TERMICOS</td>
<td>150</td>
<td>II</td>
<td>33, 13, 22, 39, 3</td>
</tr>
<tr>
<td>QUEMARADURAS</td>
<td>150</td>
<td>II</td>
<td>33, 13, 22, 39, 3</td>
<td></td>
</tr>
<tr>
<td>RONDA OPERATIVA EN INSTALACIONES INDUSTRIALES</td>
<td>RADIACIONES NO IONIZANTES</td>
<td>60</td>
<td>III</td>
<td>41, 42</td>
</tr>
<tr>
<td>MOVILIZACION DE CARGAS Suspendidas/ MATERIALES ESTIBADOS</td>
<td>ATRAPAMIENTOS</td>
<td>100</td>
<td>III</td>
<td>43, 13, 6</td>
</tr>
<tr>
<td>RADIACIONES NO IONIZANTES</td>
<td>60</td>
<td>III</td>
<td>40, 34, 6</td>
<td></td>
</tr>
<tr>
<td>ACTIVIDADES DE OFICINA</td>
<td>RADIACIONES NO IONIZANTES</td>
<td>60</td>
<td>III</td>
<td>40, 34, 6</td>
</tr>
</tbody>
</table>

MEDIDAS CORRECTIVAS

<table>
<thead>
<tr>
<th>N°</th>
<th>Categoría</th>
<th>Descripción</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proyecto / Ingeniería</td>
<td>Implementar actualizaciones tecnológicas a los Sistemas de Prevención y Protección de Incendio.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>2</td>
<td>Proyecto / Ingeniería</td>
<td>Disponer de detectores de atmósferas explosivas portátiles con certificado de trazabilidad.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mantenimiento</td>
<td>Inspeccionar que el material de las juntas en los sistemas de vapor sea el adecuado para prevenir fugas inesperadas. Reemplazar si es necesario.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>4</td>
<td>Capacitación</td>
<td>Definir los roles dentro de la brigada de emergencias y capacitar al personal para cada una de las funciones específicas</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>5</td>
<td>Organizacional</td>
<td>Efectuar mediciones del nivel de ruido en forma periódica en los puntos del Complejo presuntamente críticos.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>6</td>
<td>Normas y Procedimientos</td>
<td>Inspeccionar el estado de los elementos de protección personal (calzado, guantes, protectores auditivos, gafas de seguridad, etc), el control debe ser realizado por personal de Seguridad, Salud Ocupacional y Medio Ambiente.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>7</td>
<td>Señalización</td>
<td>Señalar todos los sectores donde se almacenen y/o manipulen productos combustibles, con cartelera de señalización industrial referente a la obligatoriedad de uso de elementos de protección personal, ubicación de extintores portátiles y bocas de incendio entre otros</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>8</td>
<td>Proyecto / Ingeniería</td>
<td>Realizar un estudio de ingeniería para evaluar la factibilidad de construir cabinas para aislar los equipos con mediciones de ruido que superan los valores admisibles y/o colocar amortiguadores en las patas, evitando rozamientos con la superficie.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>9</td>
<td>Señalización</td>
<td>Colocar cartelera de seguridad que indique la obligatoriedad de uso de arnés (con amortiguador y/o salva caídas, según corresponda) al pie de los accesos de las torres de iluminación, la casa de filtros, y toda escalera fija existente que supere los 2 metros de altura.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>10</td>
<td>Mantenimiento</td>
<td>Verificar el mantenimiento periódico de escaleras y plataformas. Mantener las mismas libres de obstáculos.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>11</td>
<td>Proyecto / Ingeniería</td>
<td>Completar barandas faltantes en plataformas y guarda hombres en escaleras tipo gato.</td>
<td>Se observaron muchas escaleras que no poseen ninguna protección ante caídas. Prioridad: Alta.</td>
</tr>
<tr>
<td>12</td>
<td>Servicio Médico</td>
<td>Verificar que el personal de operaciones expuesto a trabajos en ambientes de altas temperaturas, en espacios confinados y/o en altura, no sufra problemas de salud que pudiera provocarle desmayo, pérdida de conocimiento o mareos y no sufra de fobias u otro impedimento para realizar la tarea.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>13</td>
<td>Normas y Procedimientos</td>
<td>Proveer los elementos de protección personal necesarios a los operadores de planta para poder desarrollar sus tareas en forma segura. Los mismos deben ser de uso personal y disponer de un lugar accesible para el resguardo de los Algunos EPP se encontraban en lockers bajo llave. (Ej.: en turbinas)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proyecto / Ingeniería</td>
<td>Agregar escaleras o pasarelas en aquellos sectores donde haya que pasar por encima de tuberías al nivel del suelo. Colocar escaleras en sectores donde hay desniveles de más de 30cm de altura y pintar con colores de advertencia (negro y amarillo) aquellos desniveles menores.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>Proyecto / Ingeniería</td>
<td>Mejorar y completar caminos para la circulación del personal dentro de planta ya que muchas veces se debe caminar sobre las piedras o grava aumentando el riesgo de caídas.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>16</td>
<td>Servicio Médico</td>
<td>Implementar la realización de talleres de prevención y control del estrés (dirigida por especialistas). Complementar con las medidas adoptadas en temas relacionados con abusos de sustancias y la alimentación saludable del personal.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>17</td>
<td>RRHH/ Seguridad, Salud Ocupacional y Medio Ambiente / Servicio Médico</td>
<td>Realizar un estudio para determinar si el régimen laboral de 4X4 (12 hs - con rotación de turno diurno y nocturno) del personal de Operaciones tiene un efecto negativo sobre la salud de los trabajadores. Analizar la implementación de otro tipo de régimen laboral ya que estos cambios continuos en los hábitos de los trabajadores pueden llegar a afectar la correcta ejecución de las tareas.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>18</td>
<td>Capacitación</td>
<td>Realizar capacitaciones periódicas para el personal, acerca de las Distancias de Seguridad Eléctrica.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>19</td>
<td>Normas y Procedimientos</td>
<td>Respetar y mantener las distancias de seguridad en cercanías de partes no aisladas de instalaciones o equipos en servicio bajo tensión eléctrica (transformadores, llaves, casillas, tableros eléctricos, postes de energía, etc.).</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>20</td>
<td>Organizacional</td>
<td>Efectuar controles periódicos de las conexiones de puesta a tierra.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>21</td>
<td>Normas y Procedimientos</td>
<td>Llevar a cabo un registro de las herramientas eléctricas (pértigas, detectores de tensión, etc), verificando su estado y mantenimiento. Se debe prohibir la utilización de herramientas sin protecciones o con los cables o enchufes en mal estado.</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>22</td>
<td>RRHH</td>
<td>Proveer de ropa de trabajo ignífuga al personal</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>23</td>
<td>Normas y Procedimientos</td>
<td>Verificar que los remises y servicio de transporte contratados por YPF Energía Eléctrica S.A para el traslado del personal, cumplan con las medidas de seguridad preestablecidas en los Contratos (</td>
<td>Prioridad: Alta</td>
</tr>
<tr>
<td>Código</td>
<td>Area</td>
<td>Tarea</td>
<td>Prioridad</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>24</td>
<td>Capacitación</td>
<td>Los conductores de los remises y servicio de transporte contratados por YPF Energía Eléctrica S.A para el traslado del persona, deben realizar cursos periódicos, teóricos y prácticos, sobre manejo defensivo.</td>
<td>Alta</td>
</tr>
<tr>
<td>25</td>
<td>Mantenimiento</td>
<td>Mantener pasillos y vías de escape libres de obstáculos (Ej.: cajas, herramientas, materiales).</td>
<td>Alta</td>
</tr>
<tr>
<td>26</td>
<td>Proyecto / Ingeniería</td>
<td>Colocar rejillas o tapas a las canaletas de desagüe pluvial que circundan las oficinas de CTT.</td>
<td>Alta</td>
</tr>
<tr>
<td>27</td>
<td>Normas y Procedimientos</td>
<td>Controlar que las tapas de trinchera o canalizaciones vuelvan a cerrarse una vez finalizadas las tareas de mantenimiento varias.</td>
<td>Alta</td>
</tr>
<tr>
<td>28</td>
<td>Capacitación</td>
<td>Capacitar a las personas que conduzcan vehículos de la empresa o propios, incluso bicicletas con cursos anuales, teóricos y prácticos, sobre manejo defensivo.</td>
<td>Alta</td>
</tr>
<tr>
<td>29</td>
<td>Proyecto / Ingeniería</td>
<td>Colocar alarma de retroceso en los vehículos y máquinas que no la posean. Realizar pruebas funcionales periódicas para controlar el funcionamiento de las mismas. Exigir a las empresas contratistas la instalación de alarma de retroceso en los vehículos que ingresen a las Centrales.</td>
<td>Alta</td>
</tr>
<tr>
<td>30</td>
<td>Mantenimiento</td>
<td>Mantener colocadas las protecciones mecánicas en los equipos, luego de realizar tareas de mantenimiento.</td>
<td>Alta</td>
</tr>
<tr>
<td>31</td>
<td>Señalización</td>
<td>Señalar todos los sectores donde se opere con fluidos a presión, con cartelería referente a la obligación de uso de elementos de protección personal y la ubicación de duchas y lavaujos de emergencia, entre otros.</td>
<td>Alta</td>
</tr>
<tr>
<td>32</td>
<td>Proyecto / Ingeniería</td>
<td>Evaluar la posibilidad de emplear algún sistema efectivo para la detección temprana de fugas de vapor, de modo de minimizar los riesgos laborales y los riesgos de explosión, mediante el mantenimiento preventivo de puntos críticos.</td>
<td>Alta</td>
</tr>
<tr>
<td>33</td>
<td>Mantenimiento</td>
<td>Reponer la aislación térmica de cañerías con vapor y/o a altas temperaturas, principalmente en aquellas zonas cercanas al paso de personas. Implementar un programa de mantenimiento para asegurar el estado de conservación de las mismas.</td>
<td>Alta</td>
</tr>
<tr>
<td>34</td>
<td>Capacitación</td>
<td>Establecer un programa anual de capacitación sobre ergonomía y posiciones ergonómicas durante el desarrollo de los trabajos en oficina y en campo. Incluir en la capacitación la enseñanza de ejercicios de relajación y estiramiento muscular.</td>
<td>Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Mantenimiento</td>
<td>Mantener colocadas las protecciones mecánicas en los equipos con partes en movimiento (rotante, traslatorio, alternativo, etc.) a fin de evitar el contacto con las mismas. Ej.: poleas y correas. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Señalización</td>
<td>Señalizar todos los sectores donde se almacene y/o manipulen productos químicos y peligrosos, con cartelería referente a la obligación de uso de elementos de protección personal y la ubicación de duchas y lavaojos de emergencia, entre otros. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Normas y Procedimientos</td>
<td>Actualizar las Hojas de Seguridad de las Sustancias Químicas empleadas en las Centrales. Difundirlas al personal que se considere necesario. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Mantenimiento</td>
<td>Verificar que la presión y el caudal de agua en los lavaojos sea la adecuada. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Señalización</td>
<td>Colocar y/o mantener cartelería de seguridad para la identificación de instalaciones o equipos donde exista el riesgo de contacto con temperaturas extremas calientes. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Seguridad, Salud Ocupacional y Medio Ambiente</td>
<td>Realizar un estudio ergonómico de los puestos de trabajo que incluya la correcta ubicación del monitor (y tipo de monitor), teclado, mouse, el tipo de butaca a ser utilizada y la correcta iluminación (natural y artificial). Incluir el ajuste personal del puesto de trabajo para el uso de computadoras fijas y/o portátiles. Ejecutar las recomendaciones que resulten del mismo. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Organizacional</td>
<td>Efectuar mediciones periódicas, en los puntos presuntamente críticos, de niveles de campo electromagnético. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Servicio Médico</td>
<td>Contar con protectores/bloqueadores solares en enfermería para ser utilizado por el personal expuesto. Capacitar al personal para que comprenda la importancia del cuidado de la piel a los rayos UV y las consecuencias de la exposición continua. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Normas y Procedimientos</td>
<td>Respetar y mantener las distancias de seguridad en cercanías de equipos de izaje en operación. Delimitar y señalar la zona donde se va a realizar el izaje de cargas para restringir el paso a toda persona ajena a la operación. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Capacitación</td>
<td>Capacitar al Operador sobre el uso correcto de cada herramienta que debe emplear en sus tareas. Prioridad: Alta</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Organizacional</td>
<td>Destinar un espacio físico para el control y almacenamiento de las herramientas. Prioridad: Media</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 26: Descripción de las soluciones técnicas y/o medidas correctivas
2.6. ESTUDIO DE COSTOS DE LAS MEDIDAS CORRECTIVAS

A continuación se procede a la valoración económica de las medidas correctivas o soluciones técnicas propuestas:

1. Implementar actualizaciones tecnológicas a los Sistemas de Prevención y Protección de Incendio

Actualmente en YPF Energía Eléctrica S.A, existen tres sistemas principales de detección de incendio:

- Siemens BMS240
- Grinnell.
- Notifier FP200

Los dos primeros sistemas de detección de incendio mencionados monitorean a las distintas salas de máquinas, turbina de vapor, turbinas de de gas, transformadores, sala de bombas, sala de baterías, laboratorio químico, torres de enfriamiento y edificios de oficinas. Los sistemas cuentan con sensores de humo direccionales, pulsadores de pánico, sirenas, flashes estroboscópicos, panel de detección de mezcla explosiva y panel Minimax, envía información de alarmas al sistema de control Teleperm y DCS Bailey.

Ambos sistemas se encuentran en estado obsoleto y presentan inconvenientes que impiden realización de tareas de mantenimiento por obsolescencia tecnológica y falta de repuestos y servicio por parte del Representante técnico en el país.

Se recomienda implementar un único sistema de detección que reemplace a los anteriores recién descriptos (Siemens BMS240 y Grinnell) con idénticas características de los que están actualmente instalados y con las mejoras tecnológicas propias de un sistema más moderno.

El nuevo sistema debe estar Homologado por la norma de detección NFPA 72.

El sistema Notifier FP200 de detección de incendio en el depósito principal y de combustible, queda afuera del alcance del reemplazo, el mismo se encuentra en buen estado (se dispone de stock de repuestos y servicio técnico del fabricante).
Valoración económica: El costo total del Sistema de Prevención y Protección de Incendio propuesto es 244.000 Euros.

2. **Disponer de detectores de atmósferas explosivas portátiles con certificado de trazabilidad.**

Se recomienda adquirir un Detector Multigas Altair 5X con Sensor Xcell, Marca MSA.

Valoración económica: USD 2900.

3. **Inspeccionar que el material de las juntas en los sistemas de vapor sea el adecuado para prevenir fugas inesperadas. Reemplazar si es necesario.**

Valoración económica: No representa un costo adicional para la Empresa, ya que se realizará con Personal efectivo propio del Sector de Mantenimiento Mecánico.

4. **Definir los roles dentro de la brigada de emergencias y capacitar al personal para cada una de las funciones específicas**

Valoración económica: No representa un costo adicional para la Empresa, ya que se realizará con Personal efectivo propio del Sector de Seguridad, Salud Ocupacional y Medio Ambiente.

5. **Efectuar mediciones de nivel de ruido en forma periódica en los puntos del Complejo presuntamente críticos.**

Valoración económica: No representa un costo adicional para la Empresa, ya que serán realizadas por Personal efectivo propio del Sector de Seguridad, Salud Ocupacional y Medio Ambiente.

6. **Inspeccionar el estado de los elementos de protección personal (calzado, guantes, protectores auditivos, gafas de seguridad, etc)**

Valoración económica: No representa un costo adicional para la Empresa, ya que serán realizadas por Personal efectivo propio del Sector de Seguridad, Salud Ocupacional y Medio Ambiente.
7. Señalizar todos los sectores donde se almacenen y/o manipulen productos combustibles, con cartelería referente a la obligatoriedad de uso de elementos de protección personal, ubicación de extintores portátiles y bocas de incendio entre otros.

Se recomienda colocar los siguientes carteles de seguridad:

Carteles de incendio

Carteles de prohibición:

Carteles de obligación
Valoración económica:

Características:

- Material poliestireno de alto impacto, medidas 290x880x0.6 mm, cantidad 10, precio unitario $ 35. Costo Total $350.

- Material poliestireno de alto impacto, medidas 220x260x0.8 mm, cantidad 25, precio unitario $25. Costo Total $ 625.

El costo total de cartelería de señalización industrial en sectores donde se almacenen y/o manipulen materiales combustibles es de $ 975.

8. Realizar un estudio de ingeniería para evaluar la factibilidad de construir recintos para aislar los equipos con mediciones de ruido que superan los valores admisibles y/o colocar amortiguadores en las patas, evitando rozamientos con la superficie.

Dicho estudio se debe realizar un sobre las siguientes zonas en donde se supera el límite de ruido de 85 dBA, conforme a la Ley 19587 y Decretos, Res SRT 85/2012:

- Generador Turbina de Gas11.
- Generador Turbina de Gas12.
- Sala de Turbina de Vapor Central Tucumán.
- Sala de Bombas Central Tucumán.
- Planta de agua nueva Central San Miguel.
- Turbina de Vapor lado oeste San Miguel.

El alcance del estudio debe contemplar las consultas pertinentes con los fabricantes de los equipos para evaluar la factibilidad de construir cerramientos o cabinas aislantes para aquellos equipos con mayores niveles
de presión acústica, sin que se afecte el funcionamiento, operación e integridad de los mismos.

Valoración económica: El costo estimado del estudio de ingeniería descripto es de $55.000.

9. **Colocar cartelería de seguridad que indique la obligatoriedad de uso de arnés (con amortiguador y/o salva caídas, según corresponda) al pie de los accesos de las torres de iluminación, la casa de filtros, y toda escalera fija existente que supere los 2 metros de altura.**

Se recomienda colocar el siguiente cartel:

Carteles de obligación:

![Cartel de obligación](image)

Valoración económica:

Características:

- Material poliestireno de alto impacto, medidas 400x450x1 mm, cantidad 30, precio unitario $ 35. Costo Total $ 1050.

10. **Verificar el mantenimiento periódico de escaleras y plataformas. Mantener las mismas libres de obstáculos.**

Valoración económica: No representa un costo adicional para la Empresa, ya que se realizará con Personal efectivo propio del Sector de Servicios Generales de Planta.
11. **Completar barandas faltantes en plataformas y guarda hombres en escaleras tipo gato. Se recomienda:**

- Colocación de rodapié/baranda en acceso oeste a sala de TV de SM
- Colocación de rodapié/baranda en zona oeste a sala de TV de SM.
- Colocación de guarda hombres en escalera de acceso a casa de filtros de Turbina de gas 2 del Ciclo SM.

Los materiales utilizados son para las barandas en caño 1 1/4" x 2.5 mm y el rodapié se realizará con planchuela de 3" x 3/8".

Valoración económica: El costo total estimado es de $66.960.

12. **Verificar que el personal de operaciones expuesto a trabajos en ambientes de altas temperaturas, en espacios confinados y/o en altura, no sufra problemas de salud que pudiera provocarle desmayo, pérdida de conocimiento o mareos y no sufra de fobias u otro impedimento para realizar la tarea.**

Para ello se recomienda incluir en los estudios preocupacionales y en los estudios de vigilancia de salud del personal efectivo el estudio médico Nistagmografía.

La Nistagmografía es un estudio de pruebas motoras oculares para la evaluación de enfermedad neurológica, otológica, y vestibular causantes de diagnóstico de vértigo

Valoración económica: El costo unitario del estudio es de $ 2.820, considerando que en el Puesto de trabajo de Operador de Campo se desempeñan 10 personas, el costo total asciende a $ 28.200.

13. **Proveer los elementos de protección personal necesarios a los Operadores de Campo para poder desarrollar sus tareas en forma segura. Los mismos deben ser de uso personal y disponer de un lugar accesible para el resguardo de los mismos.**

Valoración económica: No representa un costo adicional para la Empresa, debido a que los EPP se entregan individualmente a cada Operador.
14. Agregar escaleras o pasarelas en aquellos sectores donde haya que pasar por encima de tuberías al nivel del suelo. Colocar escaleras en sectores donde hay desniveles de más de 30cm de altura y pintar con colores de advertencia (negro y amarillo) aquellos desniveles menores.

Se recomienda la construcción de las siguientes pasarelas y/o escaleras:

- Tapa cámara de cables sector norte torre de enfriamiento SM.
- Plataforma de acceso a válvulas de agua demineralizada SM.
- Plataforma de acceso a válvula de bloqueo de alimentación a caldera B de SM.
- Pasarela para acceso a Bomba de trasbase 1 FWF-PMP-003 del Ciclo CTT.

La construcción será de con materiales de acero SAE 1010, perfiles laminados UPN8; planchuelas; caños Dn 1 1/4"; piso de metal desplegado 62-32-55

Valoración económica: El costo total de la construcción de los ítems detallados es de $56.390.

15. Mejorar y completar caminos para la circulación del personal dentro de planta ya que muchas veces se debe caminar sobre las piedras o grava aumentando el riesgo de caídas.

Se recomienda construcción de 150 m2 de caminería de pavimento de hormigón en los siguientes accesos:

- Sala de bombas de CTT.
- Caldera A acceso oeste de SM.
- Caldera B acceso este de SM.
- Aerocondensador acceso sur.

Valoración económica: El costo total de la construcción de caminería recomendada es $503.000

16. Implementar la realización de talleres de prevención y control del estrés (dirigida por especialistas). Complementar con las medidas adoptadas
en temas relacionados con abusos de sustancias y la alimentación saludable del personal.

Valoración económica: No representa un costo adicional para la Empresa, ya que se solicitará al Servicio de Vigilancia de la Salud contratado brindar los talleres de prevención, como complemento del Servicio.

17. Realizar un estudio para determinar si el régimen laboral de 4X4 (12 hs - con rotación de turno diurno y nocturno) empleado por el personal en Salas de Control tiene un efecto negativo sobre la salud de los trabajadores. Analizar la implementación de otro tipo de régimen laboral ya que estos cambios continuos en los hábitos de los trabajadores puede llegar a afectar la correcta ejecución de las tareas.

Valoración económica: No representa un costo adicional para la Empresa, ya que se solicitará al Servicio de Vigilancia de la Salud contratado en coordinación con RRHH y personal de Seguridad, Salud Ocupacional y Medio Ambiente, realizar dicho estudio como complemento del Servicio.

18. Realizar capacitaciones periódicas para el personal, acerca de las Distancias de Seguridad Eléctrica.

Valoración económica: No representa un costo adicional para la Empresa, ya que serán realizadas por Personal efectivo propio del Sector de Seguridad, Salud Ocupacional y Medio Ambiente y se realizará una Planificación anual de Capacitaciones en materia de Seguridad, Salud y Medio Ambiente.

19. Respetar y mantener las distancias de seguridad en cercanías de partes no aisladas de instalaciones o equipos en servicio bajo tensión eléctrica (transformadores, llaves, casillas, tableros eléctricos, postes de energía, etc.).

Valoración económica: No representa un costo adicional para la Empresa, el Operador debe cumplir el Procedimiento vigente “Seguridad Eléctrica en Centrales Térmicas”

20. Efectuar controles periódicos de las conexiones de puesta a tierra.

Valoración económica: No representa un costo adicional para la Empresa, ya que se recomienda que los controles se cargue como un Plan de
Mantenimiento Preventivo en el Sistema de Gestión de Mantenimiento SAP que utiliza la empresa y posteriormente el Sector de Mantenimiento Eléctrico ejecute el mismo.

21. Llevar a cabo un registro de las herramientas eléctricas (pértigas, detectores de tensión, etc), verificando su estado y mantenimiento. Se debe prohibir la utilización de herramientas sin protecciones o con los cables o enchufes en mal estado.

Valoración económica: No representa un costo adicional para la Empresa, ya que el Sector de Operaciones confeccionará la planilla de control y será responsable de gestionar los Servicios de trazado y calibración.

22. Proveer de ropa de trabajo ignífuga al personal.

Se recomienda proveer la siguiente vestimenta de trabajo conforme a NFPA 70E | Norma para la Seguridad Eléctrica en Áreas de Trabajo:

- Campera ¾ enguatada, abertura central con cremallera oculta, con 4 broches a presión, compuesta por delanteros, espalda, canesú, mangas y capucha. Marca Marshall

 Tejidos Básicos: Sarga de algodón 100% de 210 grs/m2.

 Tejidos de Seguridad: Sarga ignífuga, 40-60% modacrílico, 37-48% algodón, 2%fibra antiestática / Peso: 310 g/m2 +/- 5%.

AVÍOS DE SEGURIDAD

Los avíos para las prendas ignífugas deberán ser específicos para la protección. Los cierres deben ser metálicos y veleros ignífugos.

ADICIONAL REFLEX

Cinta reflex plata de xx cm de ancho. Cosida con pespunte simple en canesú delantero y trasero y mangas.

Precio unitario: USD 275.

- Camisa manga larga, Denim Ignífuga, modelo clásico jean de seguridad, con canesú trasero y delantero en punta, dos bolsillos delanteros superiores plaque con tapa y lapicero, cuello de dos piezas,

Confeccionada en tela ignífuga Denim Indura Ultra Soft® de 88% algodón y 12% nylon de 7 onzas (237 gramos por metro cuadrado).

Precio unitario: USD 63.

- Pantalón clásico jean, dos bolsillos delanteros estilo jean, bolsillo relojero izquierdo, dos bolsillos traseros con tapa, cierre a cremallera con ziper Nomex®, cintura con presillas, cocido con hilo Nomex®. Confeccionado en tela antiflama indura sarga Ultra Soft® 88% algodón/12% nylon antiflama de alta tenacidad, de 9 onzas (305 gramos por metro cuadrado). Marca Marshall.

Precio unitario: USD 91.

Valoración económica: El costo de un conjunto de ropa de trabajo ignífuga compuesta por campera, camisa y pantalón (anteriormente descriptos) para el Puesto de trabajo de Operador de Campo conforme a la Norma NFPA 70E; asciende a USD 429 y considerando que 10 (diez) personas se desempeñan en el Puesto, el costo total representa USD 4.290.

23. Verificar que los remises y servicio de transporte contratados por YPF Energía Eléctrica S.A para el traslado del personal, cumplan con las medidas de seguridad preestablecidas en los Contratos (antigüedad de las unidades, equipamiento de las unidades, etc)

Valoración económica: No representa un costo adicional para la Empresa, ya que el Sector de Operaciones ya que se recomienda que dicha verificación sea responsabilidad del Sector Control de Contratistas.

24. Los conductores de los remises y servicio de transporte contratados por YPF Energía Eléctrica S.A para el traslado del persona, deben realizar cursos periódicos, teóricos y prácticos, sobre manejo defensivo.

Valoración económica: El curso de manejo defensivo dictado por el CESVI tiene un costo de $10.000 por persona.
25. Mantener pasillos y vías de escape libres de obstáculos (Ej.: cajas, herramientas, materiales).

Valoración económica: No representa un costo adicional para la Empresa, ya que se debe concientizar en materia de orden y limpieza al Personal de mantenimiento propio y contratado.

26. Colocar rejillas o tapas a las canaletas de desagüe pluvial que circundan las oficinas de CTT.

Se recomienda construir 20 m2 de rejillas / pasarelas de circulación, de perfiles UPN 10 y metal desplegado 75-48-55 para piso.

Valoración económica: El costo total se estima en $46.000.

27. Controlar que las tapas de trincheras o canalizaciones vuelvan a cerrarse una vez finalizadas las tareas de mantenimiento varias.

Valoración económica: No representa un costo adicional para la Empresa, ya que se debe concientizar al Personal de Mantenimiento propio y contratado.

28. Las personas que conduzcan vehículos de la empresa o propios, incluso bicicletas deben realizar cursos periódicos, teóricos y prácticos, sobre manejo defensivo. Establecer como norma que sin la aprobación de este curso no se podrán conducir vehículos dentro de las Centrales.

Valoración económica: El curso de manejo defensivo dictado por el CESVI tiene un costo de $10.000 por persona.

29. Colocar alarma de retroceso en los vehículos y máquinas que no la posean. Realizar pruebas funcionales periódicas para controlar el funcionamiento de las mismas. Exigir a las empresas contratistas la instalación de alarma de retroceso en los vehículos que ingresen a las centrales.

Se recomienda instalar en los vehículos de Planta, sirena de retroceso de 12 a 48 V, montaje lateral o frontal, sonido intermitente 110 db de intensidad.
Valoración económica: El costo individual de la colocación de la sirena es de $1100, considerando que los vehículos de Planta son 12, el costo total es de $13.200.

30. Mantener colocadas las protecciones mecánicas en los equipos posteriormente a las tareas de mantenimiento.

Valoración económica: No representa un costo adicional para la Empresa, ya que se debe concientizar al Personal de mantenimiento propio y contratado y de Operaciones sobre la importancia de reponer las protecciones de los equipos una vez que se realizaron tareas de mantenimiento o maniobras operativas.

31. Señalizar todos los sectores donde se opere con fluidos a presión, con cartelería referente a la obligación de uso de elementos de protección personal y la ubicación de duchas y lavaojos de emergencia, entre otros.

Se recomienda colocar los siguientes carteles:

Carteles de obligación

[Imágenes de carteles]

Carteles de prevención:

[Ducha de emergencia]

Valoración económica:

Características:
- Material poliestireno de alto impacto, medidas 400x140 mm, cantidad 3, precio unitario $ 12. Costo Total $ 36.
- Material poliestireno de alto impacto, medidas 220x260x0.8 mm, cantidad 32, precio unitario $25. Costo Total $ 800.

El costo total de cartelería de señalización industrial en sectores donde se opera con fluidos a presión es de $ 836.

32. **Evaluar la posibilidad de emplear algún sistema efectivo para la detección temprana de fugas de vapor, de modo de minimizar los riesgos laborales y los riesgos de explosión, mediante el mantenimiento preventivo de puntos críticos.**

Se recomienda direccionar esta medida correctiva a través del Sector de Ingeniería de Proyectos de YPF Energía Eléctrica S.A.

Valoración económica: No representa un costo adicional para la Empresa, ya que serán realizadas por Personal efectivo propio.

33. **Reponer la aislación térmica de cañerías con vapor y/o a altas temperaturas, principalmente en aquellas zonas cercanas al paso de personas. Implementar un programa de mantenimiento para asegurar el estado de conservación de las mismas.**

Se hizo un relevamiento en campo y se estimó que se deben reponer 250 m2 de aislación térmica aproximadamente.

Valoración económica: El costo unitario del m2 de la aislación de lana mineral de 100Kg/m3 es $222.

El costo total de reposición de la aislación térmica es de $ 24.000.

34. **Establecer un programa anual de capacitación sobre ergonomía y posiciones ergonómicas durante el desarrollo de los trabajos en oficina y en campo. Incluir en la capacitación la enseñanza de ejercicios de relajación y estiramiento muscular, para evitar dolores y fatiga muscular.**

Valoración económica: No representa un costo adicional para la Empresa, ya que se solicitará al Servicio de Vigilancia de la Salud contratado brindar los talleres de prevención, como complemento del Servicio.
35. Mantener colocadas las protecciones mecánicas en los equipos con partes en movimiento (rotante, translatorio, alternativo, etc.) a fin de evitar el contacto con las mismas. Ej.: poleas y correas.

Valoración económica: No representa un costo adicional para la Empresa, ya que se debe concientizar al Personal de mantenimiento propio y contratado y de Operaciones sobre la importancia de reponer las protecciones mecánicas de los equipos una vez que se realizaron tareas de mantenimiento o maniobras operativas.

36. Señalizar todos los sectores donde se almacene y/o manipulen productos químicos y peligrosos, con cartelería referente a la obligatoriedad de uso de elementos de protección personal y la ubicación de duchas y lavaojos de emergencia, entre otros.

Se recomienda colocar los siguientes carteles de seguridad:

Carteles de obligación

![Carteles de obligación](image)

Carteles de prevención:

![Carteles de prevención](image)

Carteles de peligro
Valoración económica:

Características:

- Material poliestireno de alto impacto, medidas 400x140 mm, cantidad 20, precio unitario $ 12. Costo Total $ 240.

- Material poliestireno de alto impacto, medidas 220x260x0.8mm, cantidad 12, precio unitario $25. Costo Total $ 300.

- Material poliestireno de alto impacto, medidas 400x450x1mm, cantidad 12, precio unitario $25. Costo Total $ 300.

El costo total de cartelería de señalización industrial en sectores se almacene y/o manipulen productos químicos y peligrosos es de $ 840.

37. Actualizar las Hojas de Seguridad de las Sustancias Químicas empleadas en las Centrales. Difundirlas al personal afectado.

Valoración económica: No representa un costo adicional para la Empresa, ya que el Personal efectivo propio del Sector de Seguridad, Salud Ocupacional y Medio Ambiente debe mantener actualizada las MSDS de las sustancias químicas empleadas en Complejo.

38. Verificar que la presión y el caudal de agua en los lavaojos sea la adecuada.

Valoración económica: No representa un costo adicional para la Empresa, ya que serán realizadas por Personal efectivo propio del Sector de Seguridad, Salud Ocupacional y Medio Ambiente.

39. Colocar y/o mantener cartelería de seguridad para la identificación de instalaciones o equipos donde exista el riesgo de contacto con temperaturas extremas calientes.
Se recomienda colocar el siguiente cartel de seguridad:

![Cartel de Seguridad](image)

Valoración económica:

Características:

- Material poliestireno de alto impacto, medidas 220x260x0.8 mm, cantidad 30, precio unitario $25. Costo Total $ 750.

40. **Realizar un estudio ergonómico de los puestos de trabajo en oficinas que incluya la correcta ubicación del monitor (y tipo de monitor), teclado, mouse, el tipo de butaca a ser utilizada y la correcta iluminación (natural y artificial). Incluir el ajuste personal del puesto de trabajo para el uso de computadoras fijas y/o portátiles. Ejecutar las recomendaciones que resulten del mismo.**

Se recomienda tercerizar la realización de un estudio ergonómico contemplando la resolución del Protocolo de Ergonomía aprobado por la Superintendencia de Riesgos del Trabajo el 22/04/2015.

Valoración económica: El costo total estimado del estudio es de $ 40.000.

41. **Efectuar mediciones periódicas, en los puntos presuntamente críticos, de niveles de campo electromagnético.**

Realizar un estudio para evaluar los niveles de los campos eléctricos y magnéticos en baja frecuencia de los tres generadores eléctricos. El marco legal de dichas mediciones es:
Medición de campos electromagnéticos en baja frecuencia:

- Resolución 295/03 del Ministerio de Trabajo, Empleo y Seguridad Social de la Nación (MTESS).

Medición de campos electromagnéticos en alta frecuencia:

- Resolución 202/95 del Ex Ministerio de Salud y Acción Social de la Nación (MSyAS).

Valoración económica: El estudio descripto será realizado por una empresa externa y tiene un costo aproximado de $40.000

42. Contar con protectores/bloqueadores solares en enfermería para ser utilizado por el personal que lo requiera. Capacitar al personal para que comprenda la importancia del cuidado de la piel a los rayos UV y las consecuencias de la exposición continua.

Valoración económica: La capacitación no representa un costo adicional para la Empresa, ya que se solicitará al Servicio de Vigilancia de la Salud contratado brindar los talleres de prevención, como complemento del Servicio.

El costo de Pantalla Total FPS 65 RA Crema x 90g Dermaglós Línea Solar es de $152, se sugiere la provisión de un protector solar por turno, lo que representa un costo total de $ 608.

43. Respetar y mantener las distancias de seguridad en cercanías de equipos de izaje en operación. Delimitar y señalar la zona donde se va a realizar el izaje de cargas para restringir el paso a toda persona ajena a la operación

Valoración económica: No representa un costo adicional para la Empresa, ya que se debe concientizar al Personal de mantenimiento propio y contratado y de Operaciones sobre la importancia, consideraciones y recomendaciones de seguridad en tareas de izaje.

44. Capacitar al Operador sobre el uso correcto de cada herramienta que debe emplear en sus tareas
Valoración económica: No representa un costo adicional para la Empresa, ya que dicha capacitación se realizará con Personal efectivo propio del Sector de CMASS.

45. **Destinar un espacio físico para el control y almacenamiento de las herramientas.**

Valoración económica: No representa un costo adicional para la Empresa, ya que se sugiere utilizar un locker metálico en desuso para disposición y almacenamiento de las herramientas manuales utilizadas por el Operador de Campo.
CAPÍTULO 3: ANALISIS DE LAS CONDICIONES GENERALES DE TRABAJO EN LA ORGANIZACION

En esta etapa del Proyecto se analizarán las condiciones y medio ambiente de trabajo en la Sala de Control de la Empresa, eligiendo tres factores de riesgos preponderantes identificados en el lugar de trabajo y se elaborará una propuesta con las medidas correctivas para eliminar y/o disminuir los riesgos evaluados.

Los factores seleccionados son:

- Protección Contra Incendios.
- Ergonomía.
- Factores psicosociales.

Las condiciones y medio ambiente de trabajo están constituidas por un conjunto de variables que van a influir sobre la vida y la salud física y mental de los trabajadores.

Para facilitar el análisis de los factores seleccionados, se establece la siguiente clasificación:

- **Condiciones de seguridad**: son aquellas condiciones materiales que vienen determinadas por la maquinaria, los equipos o las instalaciones y que pueden ser causas de accidentes de trabajo.

- **Ergonómicos**: a través del conocimiento de las ciencias humanas para adaptar los trabajos, sistemas, productos, ambientes, a las habilidades mentales y físicas y a las limitaciones de las personas.

- **Medio ambiente de trabajo**: características ambientales presentes en todo trabajo que pueden incidir directamente en el confort de un puesto de trabajo.

- **Exigencias del puesto**: todo trabajo exige de la persona un esfuerzo físico y mental, que condicionará la aparición de la fatiga, condición que se debe prevenir.

- **Organización del trabajo**: se consideran la jornada de trabajo, el ritmo de trabajo, la comunicación con superiores y compañeros, etc, que son factores determinantes no solo de la patología laboral clásica y de la fatiga, sino también de la motivación, la satisfacción en el trabajo, etc.

En la Sala de Control se controla la generación de las unidades, se ejecutan y coordinan las operaciones de las unidades de generación de los dos Ciclos
Combinados, se solicitan los equipos para realizar tareas de mantenimiento, se confeccionan los permisos de trabajo correspondientes y se realizan las comunicaciones con el Organismo encargado del Despacho y las Transportadoras, entre otras tareas.

En Sala de Control se encuentran las estaciones de trabajo de los Sistemas de Control de cada Ciclo Combinado, las líneas telefónicas comerciales para el cumplimiento de las consignas del Organismo encargado del Despacho y las Transportadoras y los puestos de trabajo del personal que allí se desempeña.

Cada Sistema de Control cuenta con una arquitectura de tipo "Sistema de Control Distribuido", monitorea parámetros críticos, controla y permite operar los equipos automatizados (válvulas, motores, bombas, ventiladores, etc). El sistema recibe, procesa y muestra los valores de parámetros controlados en las pantallas, cuando alguno de dichos valores sale de su rango normal de operación se activan alarmas visuales y/o sonoras, según el caso.

Los Sistemas de control se encuentran alimentados con una fuente de energía ininterrumpible con una autonomía propia de 24 horas y son operados por los Operadores de Consola.

En esta área desarrollan sus tareas cuatro personas: Ingeniero de Operaciones, Supervisor de Turno y Operadores de consola.

En la Sala de Control se ubica el mobiliario de los Puestos de trabajo detallados, computadoras, impresoras y una Biblioteca con manuales de operación de los equipos de Planta.

A continuación se describen las tareas desarrolladas en Sala de Control según el Puesto de trabajo:

I. **Ingeniero de Operaciones.**

- Relevamiento de Novedades en el Sector de Operaciones y coordinación de trabajos.
- Supervisión y seguimiento de los trabajos reportados en el parte diario de novedades operativas.
- Supervisión de los informes de funcionamiento de equipos y sistemas.
- Capacitación específica y entrenamiento.
- Análisis de limitaciones e indisponibilidades de las Unidades de Generación (Turbinas de gas y vapor).
- Análisis de condiciones operativas y reconfiguraciones de las unidades conectadas al SADI (Sistema Argentino de Interconexión)
- Declaración de disponibilidades de las Unidades de Generación (Turbinas de gas y vapor).
- Declaración de informes de fallas.
- Análisis y conocimientos de los desbalances de gas y transporte.
- Responsable del correcto funcionamiento, distribución y monitoreo de los partes diarios y mensuales de Generación.
- Interpretación de resoluciones nuevas de Secretaría de Energía y cambios normativos.
- Participación en la confección del presupuesto del Sector de Operaciones.
- Supervisión de los procedimientos operativos y órdenes de servicio.
- Seguimiento y coordinación de los temas relacionados con el personal de operaciones, licencias especiales, vacaciones, cambios de turno, etc.
- Seguimiento de la evolución de los planes de trabajos presentados por los supervisores de turno respecto a la rotación de operadores y Operadores de consola en sus funciones.

El Ingeniero de Operaciones se desempeña de lunes a viernes de 8 a 17 hs, el puesto es ocupado por una sola persona.

II. **Supervisor de Turno:**

- Recepción de novedades turno saliente y lectura del libro de novedades operativas.
- Supervisión de la planilla diaria de análisis químico.
- Revisión y supervisión de las rondas de sala de control y campo realizadas por Operador de campo y Operador de consola.
- Elaboración y supervisión del procedimiento de bloqueo y rotulado de equipos LOTO (Lock out tag out)
- Realiza control operativo de las Unidades (Turbinas de gas y vapor) y sistemas auxiliares.
- Entrenamiento del Operador de campo y Operador de consola.
- Evaluación de las competencias del personal a cargo.
- Nominación y reprogramación de gas.
- Generación de reportes de arranques y paradas de las Unidades Operativas.
- Realiza seguimiento de órdenes de trabajo programadas.
- Confección y control del parte diario de novedades operativas.
- Confección de reportes de operación.
- Auditorias de Órdenes de trabajo.
- Verifica el estado de los trabajos programados durante el turno.
- Supervisión del alcance y descripción de las Ordenes de trabajo generadas en el sector.
- Coordina con el Ingeniero de Procesos las maniobras normales ó extraordinarias de planta que pudiesen afectar a la disponibilidad y confiabilidad de los equipos a cargo.
- Confección de descripciones de sistemas, procedimientos operativos y procedimientos emergencias.
- Participación en las reuniones de Programación semanal de trabajos de Mantenimiento.

El Supervisor de Operaciones tiene un régimen de trabajo de turnos rotativos de 4 días de trabajo de 12 horas y 4 días de descanso, con rotación de turno diurno y nocturno. Los turnos son de 8 a 20 hs y de 20 hs a 8 hs y el Puesto de trabajo se cubre con una persona por turno.

III. **Operadores de consola:**
- Recepción de novedades del turno saliente e información del estado de situación a través del libro de novedades.
- Recolección de datos de medidores de energía.
- Realización de rondas en consolas de Ciclo Tucumán y Ciclo San Miguel.
- Realización de los planes de mantenimiento preventivos de Operaciones.
- Modificación en dosificaciones químicas.
- Lavado en línea de las Turbinas de Gas.
- Confección de avisos de trabajo.
- Colaborar con el Supervisor de Turno en la confección de descripciones de sistemas, procedimientos operativos, procedimientos emergencias.
- Verificación y autorización de permisos de trabajo.
- Confección y auditoría del procedimiento de bloqueo y rotulado de equipos LOTO (Lock out tag out)
- Cargas de datos en planilla de efluentes.
- Realización de reporte diario de novedades.
- Control de variables de proceso, confección de documentos y generación de reportes ante variables con desvío.
- Análisis de las tendencias de las variables de proceso.
- Arranca, para y opera las unidades en condiciones normales y de emergencia controlando el cumplimiento de las consignas del Organismo encargado del Despacho y las Transportadoras.
- En condiciones extremas toma decisiones orientadas a salvaguardar la integridad de las personas, el medioambiente y los equipos.
- Cumplir con los procedimientos de planta, operativos, de seguridad y medio ambiente vigentes.
- Participa en las nominaciones de gas.
Supervisión de la planilla diaria de análisis químico, implementando y manteniendo las recomendaciones indicadas.

El Operador de consola tiene un régimen de trabajo de turnos rotativos de 4 días de trabajo de 12 horas y 4 días de descanso, con rotación de turno diurno y nocturno. Los turnos son de 8 a 20 hs y de 20 hs a 8 hs y el Puesto de trabajo se cubre con dos personas por turno.

Se realizó un relevamiento fotográfico de la Sala de Control y se adjuntan imágenes:

Fig1: Consolas del Sistema de Control del Ciclo Tucumán
Fig 2: Consolas del Sistema de Control del Ciclo San Miguel

Fig 3: Biblioteca de Sala de Control
3.1. PROTECCION CONTRA INCENDIOS

3.1.1. INTRODUCCION

Conforme a la Ley 19.587 - Ley de Higiene y Seguridad en el trabajo (Capítulo 18); la Protección contra incendios comprende el conjunto de condiciones de construcción, instalación y equipamiento que se deben observar tanto para los ambientes como para los edificios, aun para trabajos fuera de estos y en la medida en que las tareas lo requieran. Los objetivos a cumplimentar son:

a) Dificultar el inicio de incendios.

b) Evitar la propagación del fuego y los efectos de gases tóxicos.

c) Asegurar la evacuación de las personas.

d) Facilitar el acceso y las tareas de extinción del personal de bomberos.

e) Proveer las instalaciones de detección y exhibición.

En la Sala de Control, se observa equipamiento eléctrico y electrónico (PC, notebooks, consolas del Sistema de Control de los Ciclos Combinados, impresoras, teléfonos, sistema de radios portátiles, gabinetes y racks
electrónicos), resmas de hojas, manuales y el mobiliario necesario para los puestos de trabajo de las personas que aquí se desempeñan.

Actualmente la Sala de Control cuenta con un Sistema de detección Siemens BMS 240 y un Sistema de extinción de CO2 de alta presión.

1. **Sistema de detección Siemens BMS 240:**

 Este Sistema monitorea a sensores de humo direccionables, pulsadores de pánico, sirenas, flashes estroboscópicos y envía alarmas al panel principal ubicado en la Sala de Control (fig. 5 y 6), que a su vez tiene una interfaz de conexión con el Sistema de Control de la Central Tucumán, por lo que las alarmas visuales y sonoras son monitoreadas por el Operador de consola correspondiente.

![Panel principal del Sistema de detección Siemens BMS 240](image)

Fig.5 y 6: Panel principal del Sistema de detección Siemens BMS 240

En Sala de Control se encuentran instalados ocho sensores de humo en la parte superior (Fig. 7) y seis detectores en el piso técnico, una sirena y un avisador manual de incendio.
Si bien la Sala de Control cuenta con este Sistema de detección de incendios, el mismo es obsoleto y presenta fallas y no se pueden realizar las tareas de mantenimiento correspondientes por obsolescencia tecnológica y falta de repuestos y servicio por parte del Representante técnico en el país, por lo que representa una condición de riesgo crítica.

2. **Sistema de extinción de CO2 de alta presión:**

El sistema de extinción instalado para proteger la Sala de Control es de CO2 de alta presión, diseñado de acuerdo a los lineamientos de la National Fire Protection Association Standard N° 12 (NFPA 12) quedando definido por este medio un sistema de “Inundación Total” apto para “Fuegos de arraigüe profundo”.

El sistema en cuestión consiste en una fuente de extinción principal de CO2 (dióxido de carbono) de alta presión diseñado y preparado para un accionamiento automático y manual.

Con el objetivo de cumplir con las exigencias de banco de reserva del 100% de la capacidad instalada, existe otra fuente de extinción
permanente conectada e idéntica a la principal, llamada fuente de extinción de reserva de CO2.

Una vez activado el sistema de extinción se descarga una concentración de CO2 al 30% al cabo de los primeros dos minutos, totalizándose una concentración del 50% al cabo de 7 minutos como máximo.

El sistema cuenta con 20 (veinte) cilindros de 45 Kg de capacidad cada uno (Fig.8).

En la actualidad este Sistema de extinción se acciona manualmente debido a las fallas que presenta el Sistema de detección.

Fig. 8 Cilindros CO2 Sistema de extinción

3.1.2. ANALISIS, EVALUACION Y CUANTIFICACION DEL RIESGO

Para el análisis del factor de Protección contra Incendios de la Sala de Control se procede a aplicar la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente” y la Nota Técnica “NTP 324: Cuestionario de chequeo para control de riesgos de accidente” del INSHT (Instituto Nacional de Seguridad e Higiene en el Trabajo, Ministerio de Trabajo y Asuntos Sociales de España):

- Se elabora el cuestionario de chequeo sobre el factor de riesgo aplicando...
la Nota Técnica “NTP 324: Cuestionario de chequeo para control de riesgos de accidente”

- Se cumple con el cuestionario de chequeo en el lugar de trabajo y se estima el nivel de deficiencia del cuestionario aplicado al factor analizado (Tabla 27).

<table>
<thead>
<tr>
<th>PROTECCIÓN CONTRA INCENDIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUGAR: Sala de Control</td>
</tr>
<tr>
<td>EMPRESA: YPF Energía Eléctrica - Complejo de Generación Tucumán</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUESTIONARIO DE CHEQUEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de Riesgo</td>
</tr>
<tr>
<td>1. Se observan hábitos correctos de trabajo</td>
</tr>
<tr>
<td>2. Se mantiene el área de trabajo limpia y ordenada y se eliminan periódicamente los residuos.</td>
</tr>
<tr>
<td>3. Existe prohibición de fumar en sectores de riesgo.</td>
</tr>
<tr>
<td>4. Se dispone de un sistemas fijos activo de detección de fuego</td>
</tr>
<tr>
<td>5. Se dispone de extintores portátiles en número y distribución suficientes.</td>
</tr>
<tr>
<td>6. Se cuenta con un Plan de emergencia para reducir al mínimo las posibles consecuencias en caso de siniestros.</td>
</tr>
<tr>
<td>7. Conocen los trabajadores el uso correcto de extintores y otros sistemas de lucha contra incendio.</td>
</tr>
<tr>
<td>8. Los extintores se revisan periódicamente por empresas certificadas</td>
</tr>
<tr>
<td>9. Existe compromiso de la Organización para hacer cumplir las medidas de la lucha contra incendios.</td>
</tr>
<tr>
<td>10. La ropa de trabajo del personal es ignífuga.</td>
</tr>
<tr>
<td>11. La instalación eléctrica es antíexplosiva.</td>
</tr>
<tr>
<td>12. Existe brigada de lucha contra incendios</td>
</tr>
</tbody>
</table>

Criterios de valoración:
- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1, 6, 7, 9.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 4, 5.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas:2, 3, 8,10,11,12.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: DEFICIENTE (6)

Tabla 27: Cuestionario de chequeo NTP 324 – Protección contra incendios

- Se estima el nivel de exposición al riesgo.
- Se estima el nivel de probabilidad a partir del nivel de deficiencia y del nivel de exposición.
- Se contrasta el nivel de probabilidad a partir de datos históricos disponibles (accidentabilidad)
- Se estima el nivel de riesgo a partir del nivel de probabilidad y del nivel de consecuencias.
- Se establecen los niveles de intervención considerando los resultados obtenidos y su justificación socio-económica.
- Se contrastan los resultados obtenidos con los estimados a partir de fuentes de información precisas y de la experiencia.

En la Tabla 28 se adjuntan los resultados de la Evaluación y cuantificación del factor de Protección contra Incendios en la Sala de Control, empleando la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente”, del INSHT.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>NIVEL DE DEFICIENCIA</th>
<th>NIVEL DE EXPOSICION</th>
<th>NIVEL DE PROBABILIDAD</th>
<th>NIVEL DE CONSECUENCIA</th>
<th>NIVEL DE RIESGO</th>
<th>NIVEL DE INTERVENCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTECCION CONTRA INCENDIOS</td>
<td>DEFICIENTE (6)</td>
<td>4</td>
<td>MA-24</td>
<td>100</td>
<td>2400</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 28: Evaluación de factor Protección contra Incendios – Sala de Control YPF Energía Eléctrica

El resultado de la evaluación es que el factor de Protección de Incendios de la Sala de Control es crítico y requiere corrección urgente.

Conclusiones:

Durante el relevamiento en la Sala de Control se observa que el panel principal del Sistema de detección Siemens BMS 240 presenta varias alarmas activas, las cuales no son reales pero están presentes y son desestimadas por el Operador de consola, debido al acostumbramiento a convivir con las mismas y a que no se dispone de repuestos y/o Servicios para solucionar las mismas por tratarse de un Sistema obsoleto desde el punto de vista tecnológico.

Por otra parte al no ser confiable el Sistema de detección; el Sistema de extinción se encuentra en operación manual, para evitar que una alarma “no real” lo active en caso de operarse en la modalidad automática.
Esto representa un riesgo importante, ya que ante un incendio puede haber demoras en el accionamiento del Sistema de extinción con las consecuencias obvias que esto puede ocasionar.

Con la información relevada y la evaluación y cuantificación del factor de Protección de Incendio de la Sala de Control, se concluye que representa una situación crítica y requiere corrección urgente.

3.1.3. ESTRATEGIA E INTERVENCION SOBRE EL RIESGO

Se recomienda implementar una actualización tecnológica del Sistema de detección Siemens BMS240, con idénticas características y con las mejoras tecnológicas propias de un sistema más moderno.

El nuevo Sistema de detección debe estar Homologado por la norma de detección NFPA 72.

3.2. ERGONOMIA

3.2.1. INTRODUCCION

A nivel laboral la ergonomía, intenta ajustar el trabajo al hombre y a nivel legal representa “leyes de trabajo”, que son operaciones de carácter multidisciplinario encargadas del estudio de la conducta y las actividades de la persona, con la finalidad de adecuar los productos, sistemas, puestos de trabajo y entornos a las características, limitaciones y necesidades de sus usuarios, buscando optimizar su eficacia, seguridad y confort.

Los objetivos generales de la ergonomía son:

- Reducción de lesiones y enfermedades ocupacionales.
- Disminución de los costos por incapacidad de los trabajadores.
- Mejoramiento de la calidad de trabajo.
- Aplicación de las normas existentes.
- Reducción de costos por incapacidad.
- Disminución del ausentismo.
- Aumento del confort y el bienestar de los trabajadores.
- Aumento de la productividad de las labores.
- Aseguramiento de condiciones que favorezcan un trabajo de calidad.

En la Sala de Control, la Ergonomía es un factor muy relevante, ya que es un área de trabajo donde todos los Puestos que allí se desempeñan, son usuarios de computadoras, pantallas y accesorios y el 75% tiene jornadas laborales de 12 horas.

A continuación se adjuntan imágenes:

Fig 9: Operador de consola Ciclo San Miguel
3.2.2. ANALISIS, EVALUACION Y CUANTIFICACION DEL RIESGO

Para el análisis del factor de Ergonomía de la Sala de Control de YPF Energía Eléctrica – Complejo de Generación Tucumán, se procede a aplicar la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente” y la Nota Técnica “NTP 324: Cuestionario de chequeo para control de riesgos de accidente” del INSHT (Instituto Nacional de Seguridad e Higiene en el Trabajo, Ministerio de Trabajo y Asuntos Sociales de España):

- Se elabora el cuestionario de chequeo sobre el factor de riesgo aplicando la Nota técnica “NTP 324: Cuestionario de chequeo para control de riesgos de accidente”
- Se cumple con el cuestionario de chequeo en el lugar de trabajo y se estima el nivel de deficiencia del cuestionario aplicado al factor de riesgo analizado (Tabla 29).
ERGONOMIA

LUGAR: Sala de Control
EMPRESA: YPF Energía Eléctrica - Complejo de Generación Tucumán

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El Operador recibe información sobre los riesgos ergonómicos a los que se encuentra expuesto (por ejm. posturas forzadas.)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Se observan medidas organizativas para fomentar la realización de pautas de trabajo seguro para evitar los sobreesfuerzos producidos por la adopción de posturas forzadas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Se fomentan pausas en el trabajo para realizar ejercicios de relajación.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se dispone de un Servicio de vigilancia de la Salud.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se observa orden y limpieza en el área de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Las sillas tienen asiento el asiento regulable en altura.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. El respaldo de la silla es ajustable</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9. El asiento es giratorio y estable con cinco puntos de apoyo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10. Se dispone de reposapiés</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11. El puesto de trabajo no está situado de frente ni de espaldas respecto a fuente de luz natural.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12. Los programas informáticos revisten especiales dificultades de manejo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>13. Los apoyabrazos están ajustados de modo que los hombros queden relajados y las muñecas estén en una posición neutra y cómoda</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1, 2.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3, 7, 8, 9, 10, 11, 13.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 4, 5, 6, 12.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: DEFICIENTE (2)

Tabla 29: Cuestionario de chequeo NTP 324 – Ergonomía

- Se estima el nivel de exposición al riesgo.
- Se estima el nivel de probabilidad a partir del nivel de deficiencia y del
nivel de exposición.

- Se contrasta el nivel de probabilidad a partir de datos históricos disponibles (accidentabilidad).
- Se estima el nivel de riesgo a partir del nivel de probabilidad y del nivel de consecuencias.
- Se establecen los niveles de intervención considerando los resultados obtenidos y su justificación socio-económica.
- Se contrastan los resultados obtenidos con los estimados a partir de fuentes de información precisas y de la experiencia.

En la Tabla 30 se adjuntan los resultados de la Evaluación y cuantificación del factor Ergonomía en la Sala de Control, empleando la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente”, del INSHT.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>NIVEL DE DEFICIENCIA</th>
<th>NIVEL DE EXPOSICION</th>
<th>NIVEL DE PROBABILIDAD</th>
<th>NIVEL DE CONSECUENCIA</th>
<th>NIVEL DE RIESGO</th>
<th>NIVEL DE INTERVENCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERGONOMÍA</td>
<td>DEFICIENTE (6)</td>
<td>4</td>
<td>MA-24</td>
<td>25</td>
<td>600</td>
<td>I</td>
</tr>
</tbody>
</table>

Tabla 30: Evaluación de factor Ergonomía – Sala de Control YPF Energía Eléctrica

El resultado obtenido de la evaluación determina que el factor de Ergonomía en la Sala de Control representa una situación crítica y requiere corrección urgente.

Método Reba

A continuación aplicamos el Método Reba, que es específico para evaluar los riesgos derivados de padecer desórdenes corporales relacionados con el trabajo, basándose en el análisis de las posturas adoptadas por los miembros superiores del cuerpo (brazo, antebrazo, muñeca), del tronco, del cuello y de las piernas.

Este Método evalúa tanto posturas estáticas como dinámicas, e incorpora la posibilidad de señalar la existencia de cambios bruscos de postura o posturas inestables. El método valora si la postura de los miembros superiores del cuerpo es adoptada a favor o en contra de la gravedad.

Este Método tiene como objetivo:

- Desarrollar un sistema de análisis postural sensible para riesgos musculoesqueléticos en una variedad de tareas.
- Dividir el cuerpo en segmentos para codificarlos individualmente, con referencia a los planos de movimiento.

- Suministrar un sistema de puntuación para la actividad muscular debida a posturas estáticas (segmento corporal o una parte del cuerpo), dinámicas (acciones repetidas, por ejemplo repeticiones superiores a 4 veces/minuto, excepto andar), inestables o por cambios rápidos de la postura.

- Reflejar que la interacción o conexión entre la persona y la carga es importante en la manipulación manual pero que no siempre puede ser realizada con las manos.

- Incluir también una variable de agarre para evaluar la manipulación manual de cargas.

- Dar un nivel de acción a través de la puntuación final con una indicación de urgencia.

Aplicación del Método Reba – Sala de Control

Grupo A: Puntuaciones del tronco, cuello y piernas.

El método comienza con la valoración y puntuación individual de los miembros del grupo A, formado por el tronco, el cuello y las piernas.

Puntuación del tronco

El primer miembro a evaluar del grupo A es el tronco. Se deberá determinar si el trabajador realiza la tarea con el tronco erguido o no, indicando en este último caso el grado de flexión o extensión observado. Se seleccionará la puntuación adecuada de la tabla 31.

Figura 11. Posiciones del tronco.
Para los Puestos de Trabajo de Sala de Control, se considera que la posición de tronco es erguido.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El tronco está erguido.</td>
</tr>
<tr>
<td>2</td>
<td>El tronco está entre 0 y 20 grados de flexión o 0 y 20 grados de extensión.</td>
</tr>
<tr>
<td>3</td>
<td>El tronco está entre 20 y 60 grados de flexión o más de 20 grados de extensión.</td>
</tr>
<tr>
<td>4</td>
<td>El tronco está flexionado más de 60 grados.</td>
</tr>
</tbody>
</table>

*Tabla 31. Puntuación del tronco.

La puntuación del tronco incrementará su valor si existe torsión o inclinación lateral del tronco.

Figura 12. Posiciones que modifican la puntuación del tronco.

Esto no aplica para los Puestos de trabajos de la Sala de Control.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe torsión o inclinación lateral del tronco.</td>
</tr>
</tbody>
</table>

*Tabla 32. Modificación de la puntuación del tronco.

Aplicando la Tabla 31 para los Puestos de Trabajo de Sala de Control, se concluye que la **Puntuación del Tronco es igual a 1.**

Puntuación del cuello
En segundo lugar se evaluará la posición del cuello. El método considera dos posibles posiciones del cuello. En la primera el cuello está flexionado entre 0 y 20 grados y en la segunda existe flexión o extensión de más de 20 grados.

![Figura 13. Posiciones del cuello](image)

Para los Puestos de Trabajo de Sala de Control, se considera que la flexión del cuello entre 0 y 20 grados.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El cuello está entre 0 y 20 grados de flexión.</td>
</tr>
<tr>
<td>2</td>
<td>El cuello está flexionado más de 20 grados o extendido.</td>
</tr>
</tbody>
</table>

Tabla 33. Puntuación del cuello

La puntuación calculada para el cuello podrá verse incrementada si el trabajador presenta torsión o inclinación lateral del cuello, tal y como indica la tabla 33.

![Figura 14. Posiciones que modifican la puntuación del cuello](image)

Para los Puestos de trabajo de la Sala de Control, se considera factible la torsión.
<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe torsión y/o inclinación lateral del cuello.</td>
</tr>
</tbody>
</table>

Tabla 34. Modificación de la puntuación del cuello.

Aplicando la Tabla 33 y Tabla 34 para los Puestos de trabajo de la Sala de Control, se concluye que la Puntuación del Cuello es igual a 2.

Puntuación de las piernas

Para terminar con la asignación de puntuaciones de los miembros del grupo A se evaluará la posición de las piernas. La consulta de la Tabla 35 permitirá obtener la puntuación inicial asignada a las piernas en función de la distribución del peso.

Figura 15. Posición de las piernas.

Para los Puestos de Trabajo de Sala de Control, se considera que la posición de las piernas es soporte bilateral, andando o sentado.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Soporte bilateral, andando o sentado.</td>
</tr>
<tr>
<td>2</td>
<td>Soporte unilateral, soporte ligero o postura inestable.</td>
</tr>
</tbody>
</table>

Tabla 35. Puntuación de las piernas.

La puntuación de las piernas se verá incrementada si existe flexión de una o ambas rodillas. El incremento podrá ser de hasta 2 unidades si existe flexión de más de 60°. Si el trabajador se encuentra sentado, el método considera
que no existe flexión y por tanto no incrementa la puntuación de las piernas.
Tabla 36

![Figura 16. Ángulo de flexión de las piernas.](image)

Para los Puestos de Trabajo de Sala de Control, se considera que la flexión de ambas rodillas de 30 y 60°.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe flexión de una o ambas rodillas entre 30 y 60°.</td>
</tr>
<tr>
<td>+2</td>
<td>Existe flexión de una o ambas rodillas de más de 60° (salvo postura sedente).</td>
</tr>
</tbody>
</table>

Tabla 36. Modificación de la puntuación de las piernas.

Aplicando la Tabla 35 y Tabla 36 para los Puestos de Trabajo de Sala de Control, se concluye que la **Puntuación de las Piernas es igual a 2**.

Grupo B: Puntuaciones de los miembros superiores (brazo, antebrazo y muñeca).

Finalizada la evaluación de los miembros del grupo A se procederá a la valoración de cada miembro del grupo B, formado por el brazo, antebrazo y la muñeca. Cabe recordar que el Método analiza una única parte del cuerpo, lado derecho o izquierdo, por tanto se puntuará un único brazo, antebrazo y muñeca, para cada postura.

Puntuación del brazo
Para determinar la puntuación a asignar al brazo, se deberá medir su ángulo de flexión. La figura 7 muestra las diferentes posturas consideradas por el método y pretende orientar al evaluador a la hora de realizar las mediciones necesarias.

En función del ángulo formado por el brazo se obtendrá su puntuación consultando la tabla que se muestra a continuación (Tabla 37).

![Figura 17. Posiciones del brazo.](image)

Para los Puestos de Trabajo de Sala de Control, se considera que la posición del brazo está entre 21 y 45 grados de flexión.

Tabla 37. Puntuación del brazo.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El brazo está entre 0 y 20 grados de flexión ó 0 y 20 grados de extensión.</td>
</tr>
<tr>
<td>2</td>
<td>El brazo está entre 21 y 45 grados de flexión o más de 20 grados de extensión.</td>
</tr>
<tr>
<td>3</td>
<td>El brazo está entre 46 y 90 grados de flexión.</td>
</tr>
<tr>
<td>4</td>
<td>El brazo está flexionado más de 90 grados.</td>
</tr>
</tbody>
</table>

La puntuación asignada al brazo podrá verse incrementada si el trabajador tiene el brazo abducido o rotado o si el hombro está elevado. Sin embargo, el método considera una circunstancia atenuante del riesgo la existencia de apoyo para el brazo o que adopte una posición a favor de la gravedad, disminuyendo en tales casos la puntuación inicial del brazo. Las condiciones valoradas por el método como atenuantes o agravantes de la posición del
brazo pueden no darse en ciertas posturas, en tal caso el resultado consultado en la tabla 37 permanecería sin alteraciones.

Figura 18. Posiciones que modifican la puntuación del brazo.

Considerando las posiciones descriptas en la Figura 18 para los Puestos de trabajo analizados, corresponde disminuir en 1 punto la puntuación inicial del brazo.

Aplicando la Tabla 37 y está última consideración para los Puestos de trabajo de la Sala de Control, se concluye que la Puntuación del Brazo es igual a 1.

Puntuación del antebrazo

A continuación será analizada la posición del antebrazo. La consulta de la tabla 36 proporcionará la puntuación del antebrazo en función su ángulo de flexión, la figura 19 muestra los ángulos valorados por el método. En este caso el método no añade condiciones adicionales de modificación de la puntuación asignada.

Figura 19. Posiciones del antebrazo.

Para los Puestos de Trabajo de Sala de Control, se considera que la posición del antebrazo está flexionada por debajo de 60 grados o por encima de 100 grados.
<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El antebrazo está entre 60 y 100 grados de flexión.</td>
</tr>
<tr>
<td>2</td>
<td>El antebrazo está flexionado por debajo de 60 grados o por encima de 100 grados.</td>
</tr>
</tbody>
</table>

Tabla 38. Puntuación del antebrazo.

Aplicando la Tabla 38 para los Puestos de Trabajo de Sala de Control, se concluye que la **Puntuación del Antebrazo es igual a 1.**

Puntuación de la Muñeca

Para finalizar con la puntuación de los miembros superiores se analizará la posición de la muñeca. La figura 20 muestra las dos posiciones consideradas por el método. Tras el estudio del ángulo de flexión de la muñeca se procederá a la selección de la puntuación correspondiente consultando los valores proporcionados por la tabla 39.

![Figura 20. Posiciones de la muñeca.](#)

Para los Puestos de Trabajo de Sala de Control, se considera que la posición de la muñeca está entre 0 y 15 grados de flexión o extensión.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La muñeca está entre 0 y 15 grados de flexión o extensión.</td>
</tr>
<tr>
<td>2</td>
<td>La muñeca está flexionada o extendida más de 15 grados.</td>
</tr>
</tbody>
</table>

Tabla 39. Puntuación de la muñeca.

El valor calculado para la muñeca se verá incrementado en una unidad si esta presenta torsión o desviación lateral (figura 21).
Figura 21. Torsión o desviación de la muñeca.

Para los Puestos de Trabajo de Sala de Control, se considera factible la desviación lateral de la muñeca.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Existe torsión o desviación</td>
</tr>
<tr>
<td></td>
<td>lateral de la muñeca.</td>
</tr>
</tbody>
</table>

Tabla 40. Modificación de la puntuación de la muñeca.

Aplicando la Tabla 39 y Tabla 40 para los Puestos de trabajo de la Sala de Control, se concluye que la Puntuación de la Muñeca es igual a 2.

Puntuaciones de los grupos A y B.

Las puntuaciones individuales obtenidas para el tronco, el cuello y las piernas (grupo A), permitirá obtener una primera puntuación de dicho grupo mediante la consulta de la tabla mostrada a continuación (Tabla A).

Para los Puestos de Trabajo de Sala de Control, consideramos los siguientes valores para obtener la puntuación en la TABLA A:

- Puntuación del Tronco: 1.
- Puntuación del Cuello: 2.
- Puntuación del Piernas: 2.

<table>
<thead>
<tr>
<th>TABLA A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tronco</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Tabla 41. Puntuación inicial para el grupo A.
Para los Puestos de Trabajo de Sala de Control el valor de **Puntuación inicial para el grupo A es igual a 2** (Tabla 41).

La puntuación inicial para el grupo B se obtendrá a partir de la puntuación del brazo, el antebrazo y la muñeca consultando la siguiente tabla (Tabla B).

Para los Puestos de Trabajo de Sala de Control, consideramos los siguientes valores para obtener la puntuación en la TABLA B:

- **Puntuación del Brazo**: 1.
- **Puntuación del Antebrazo**: 1.
- **Puntuación de la Muñeca**: 2.

<table>
<thead>
<tr>
<th></th>
<th>1 Muñeca</th>
<th>2 Muñeca</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla B

Para los Puestos de Trabajo de Sala de Control el valor de **Puntuación inicial para el grupo B es igual a 2** (Tabla 42).

Puntuación de la carga o fuerza.

La carga o fuerza manejada modificará la puntuación asignada al grupo A (tronco, cuello y piernas), excepto si la carga no supera los 5 Kilogramos de peso, en tal caso no se incrementará la puntuación. La siguiente tabla muestra el incremento a aplicar en función del peso de la carga. Además, si la fuerza se aplica bruscamente se deberá incrementar una unidad.

En adelante la puntuación del grupo A, debidamente incrementada por la carga o fuerza, se denominará "Puntuación A".

Para los Puestos de Trabajo de Sala de Control, la **Puntuación A es igual a 2**, ya que no aplica la puntuación para carga o fuerza de la Tabla 43.
<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>La carga o fuerza es menor de 5 kg.</td>
</tr>
<tr>
<td>+1</td>
<td>La carga o fuerza está entre 5 y 10 Kgs.</td>
</tr>
<tr>
<td>+2</td>
<td>La carga o fuerza es mayor de 10 Kgs.</td>
</tr>
</tbody>
</table>

Tabla 43. Puntuación para la carga o fuerzas.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>La fuerza se aplica bruscamente.</td>
</tr>
</tbody>
</table>

Tabla 44. Modificación de la puntuación para la carga o fuerzas.

Puntuación del tipo de agarre.

El tipo de agarre aumentará la puntuación del grupo B (brazo, antebrazo y muñeca), excepto en el caso de considerarse que el tipo de agarre es bueno.

La tabla 43 muestra los incrementos a aplicar según el tipo de agarre.

En lo sucesivo la puntuación del grupo B modificada por el tipo de agarre se denominará "Puntuación B".

Para los Puestos de trabajo de la Sala de Control, la Puntuación B es igual a 2, ya que no se ve incrementada porque el agarre es bueno (Tabla 45).

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Posición</th>
</tr>
</thead>
</table>
| +0 | **Agarre Bueno.**
El agarre es bueno y la fuerza de agarre de rango medio |
| +1 | **Agarre Regular.**
El agarre con la mano es aceptable pero no ideal o el agarre es aceptable utilizando otras partes del cuerpo. |
| +2 | **Agarre Malo.**
El agarre es posible pero no aceptable. |
| +3 | **Agarre Inaceptable.**
El agarre es torpe e inseguro, no es posible el agarre manual o el agarre es inaceptable utilizando otras partes del cuerpo. |

Tabla 45. Puntuación del tipo de agarre.
Puntuación C

La "Puntuación A" y la "Puntuación B" permitirán obtener una puntuación intermedia denominada "Puntuación C". La siguiente tabla (Tabla C) muestra los valores para la "Puntuación C".

Para los Puestos de Trabajo de Sala de Control, considerando la Puntuación A igual a 2 y la Puntuación B igual a 2, se obtiene que la Puntuación C es igual a 2 (Tabla 46).

<table>
<thead>
<tr>
<th>Puntuación A</th>
<th>Puntuación B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1 1 2 3 3 4 5 6 7 7 7</td>
</tr>
<tr>
<td>2</td>
<td>1 2 2 3 4 4 5 6 6 7 7 8</td>
</tr>
<tr>
<td>3</td>
<td>2 3 3 3 4 5 6 7 7 8 8 8</td>
</tr>
<tr>
<td>4</td>
<td>3 4 4 4 5 6 7 8 8 9 9 9</td>
</tr>
<tr>
<td>5</td>
<td>4 4 4 5 6 7 8 8 9 9 9 9</td>
</tr>
<tr>
<td>6</td>
<td>6 6 6 7 8 8 9 9 10 10 10 10</td>
</tr>
<tr>
<td>7</td>
<td>7 7 7 8 9 9 9 10 10 11 11 11</td>
</tr>
<tr>
<td>8</td>
<td>8 8 8 9 10 10 10 10 11 11 11 11</td>
</tr>
<tr>
<td>9</td>
<td>9 9 9 10 10 11 11 12 12 12 12 12</td>
</tr>
<tr>
<td>10</td>
<td>10 10 10 11 11 11 12 12 12 12 12 12</td>
</tr>
<tr>
<td>11</td>
<td>11 11 11 11 12 12 12 12 12 12 12 12</td>
</tr>
<tr>
<td>12</td>
<td>12 12 12 12 12 12 12 12 12 12 12 12</td>
</tr>
</tbody>
</table>

Tabla 46. Puntuación C en función de las puntuaciones A y B.

Puntuación Final

La puntuación final del método es el resultado de sumar a la "Puntuación C" el incremento debido al tipo de actividad muscular. Los tres tipos de actividad consideradas por el método no son excluyentes y por tanto podrían incrementar el valor de la "Puntuación C" hasta en 3 unidades.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Una o más partes del cuerpo permanecen estáticas, por ejemplo soportadas durante más de 1 minuto.</td>
</tr>
<tr>
<td>+1</td>
<td>Se producen movimientos repetitivos, por ejemplo</td>
</tr>
</tbody>
</table>
repetidos más de 4 veces por minuto (excluyendo caminar).

+1 Se producen cambios de postura importantes o se adoptan posturas inestables.

Tabla 47. Puntuación del tipo de actividad muscular.

Para los Puestos de Trabajo de Sala de Control, considerando la Puntuación Final es igual a 4, ya que la Puntuación C se ve incrementada en 2 por el tipo de actividad muscular (Tabla 47).

El Método clasifica la puntuación final en 5 rangos de valores. A su vez cada rango se corresponde con un Nivel de Acción. Cada Nivel de Acción determina un nivel de riesgo y recomienda una actuación sobre la postura evaluada, señalando en cada caso la urgencia de la intervención. El valor del resultado será mayor cuanto mayor sea el riesgo previsto para la postura, el valor 1 indica un riesgo inapreciable mientras que el valor máximo de 15, establece que se trata de una postura de riesgo muy alto sobre la que se debería actuar de inmediato.

<table>
<thead>
<tr>
<th>Puntuación Final</th>
<th>Nivel de acción</th>
<th>Nivel de Riesgo</th>
<th>Actuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Inapreciable</td>
<td>No es necesaria actuación</td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td>Bajo</td>
<td>Puede ser necesaria la actuación.</td>
</tr>
<tr>
<td>4-7</td>
<td>2</td>
<td>Medio</td>
<td>Es necesaria la actuación.</td>
</tr>
<tr>
<td>8-10</td>
<td>3</td>
<td>Alto</td>
<td>Es necesaria la actuación cuanto antes.</td>
</tr>
<tr>
<td>11-15</td>
<td>4</td>
<td>Muy alto</td>
<td>Es necesaria la actuación de inmediato.</td>
</tr>
</tbody>
</table>

Tabla 48. Niveles de actuación según la puntuación final obtenida.

El siguiente esquema sintetiza la aplicación del método.
Figura 22. Flujo de obtención de puntuaciones en el método Reba

Cabe recordar que los pasos del método detallados se corresponden con la evaluación de una única postura. Para el análisis de puestos la aplicación del método deberá realizarse para las posturas más representativas. El análisis del conjunto de resultados permitirá al evaluador determinar si el puesto resulta aceptable tal y como se encuentra definido, si es necesario un estudio más profundo para mayor concreción de las acciones a realizar, si es posible mejorar el puesto con cambios concretos en determinadas posturas o si, finalmente, es necesario plantear el rediseño del puesto.

Conclusiones
De la aplicación del Método Reba en los Puestos de Trabajo de Sala de Control, se determina que el nivel de riesgo ergonómico es medio y es necesaria la actuación como consecuencia de la carga postural.

Se observa que el cuello, el tronco, las piernas y las muñecas son las partes más afectadas; recordemos que estos Puestos de trabajo tienen jornadas laborales de 12 horas y estar sentado tanto tiempo es muy dañino por varias razones: la circulación sanguínea, especialmente en las piernas, hacia donde debe ir y retornar, no cumple con la misma eficacia si no hay movimiento que la ayude. Por otra parte, la columna vertebral, que debería mantenerse recta, a menudo es maltratada por la pésima costumbre de inclinarse hacia el escritorio y hacia el teclado. Esto, sumado al estrés por la exigencia de las tareas propia del Puesto, va poniendo tensos los músculos y termina por hacer presión sobre las vértebras o los nervios de la columna, ocasionando molestias y dolores de espalda. Si a esto le sumamos que el Operador de Consola debe controlar parámetros operativos en cinco pantallas, alguna de las cuales no están de frente, sino a un costado, el cuello sufre también las consecuencias. Además los brazos, a menudo sin apoyo, deben realizar un esfuerzo adicional, del que rara vez somos conscientes, para darles a las manos la fuerza para apretar el teclado.

Durante el recorrido se observó que el Ingeniero de Operaciones mide aproximadamente 1,90 m y el respaldo de la silla de su Puesto le cubre apenas la mitad de su espalda y por supuesto que no puede utilizar apoya cabezas.

Se observa también que los ventanales se ubican frente a los Puestos de los Operadores de Consola y de espalda a los Puestos del Ingeniero de Operaciones y del Supervisor de Turno, ocasionando deslumbramientos durante la mañana, ya que las ventanas tienen orientación este.

Lo anteriormente planteado puede traer como consecuencias una serie de patologías; severos problemas de columna, síndrome de túnel carpiano, dolor de cuello y espalda, dolores de cabeza, tendinitis y también molestias en hombros, piernas.

3.2.3. ESTRATEGIA E INTERVENCIÓN SOBRE EL RIESGO
- **Estudio ergonómico de los Puestos de Trabajo**: que incluya la correcta ubicación del monitor (y tipo de monitor), teclado, mouse, el tipo de butaca a ser utilizada y la correcta iluminación (natural y artificial). Incluir el ajuste personal del puesto de trabajo para el uso de computadoras fijas y/o portátiles considerando la Resolución del Protocolo de Ergonomía aprobado por la Superintendencia de Riesgos del Trabajo el 22/04/2015

- **Reemplazo / adecuación del mobiliario de los puestos**: evaluar el diseño ergonómico del puesto de trabajo, adaptar el mobiliario (escritorio, sillas, tableros, etc.), disponer de planos de trabajo adecuados en altura y la distancia de alcance de los materiales (mouse, carpetas, etc.) a las características personales de cada individuo. Se recomienda:

 1. **Silla de trabajo**:
 - Debe tener ruedas y posibilidad de giro para permitir la movilidad y el acceso a los elementos de trabajo.
 - Debe ser de esquinas redondeadas y sin aristas ni cantos duros, el borde delantero debe ser suavemente curvado para evitar compresiones debajo de los muslos y rodillas. Si la silla no posee estas características, el uso de cojines, ayudarán a producir tales efectos.
 - El relleno del asiento y del respaldo no debe ser demasiado mullido ya que en lugar de sujetar y ayudar a mantener la posición correcta de la columna vertebral, adoptan todas las deformaciones sin corregir ninguna. Debe recordarse que todo lo blando es malo para la espalda. Lo ideal es un relleno firme de 2 ó 3 cm. de espesor sobre una base dura.
 - La profundidad óptima del asiento será aquella que permite usar el respaldo sin que se note una presión excesiva debajo de las rodillas.
• Deben disponer de un adecuado apoyo lumbar, si no lo posee se debe usar un pequeño cojín en el respaldo que se acomoda según la altura del usuario.
• La altura del respaldo debe llegar como mínimo hasta debajo de los omóplatos.
• Debe poseer reposabrazos algo retrasados con respecto al borde del asiento para permitir acercarse a la mesa con comodidad, para dar apoyo y descanso a los hombros, brazos y aliviar la tensión muscular en ambos.
• La altura de la silla debe ser regulable para adaptarla a la mesa (de forma que ésta quede a la altura de los codos), y si es necesario solicitar un reposapiés.

2. Escritorio / Mesa de trabajo
• Debe quedar aproximadamente a la altura del codo cuando se está sentado (72±1.5 cm, hasta 75±1.5 cm para usuarios muy altos). Si la mesa es superior a los 76 cm hay se debe reducir la altura de sus apoyos al piso o reemplazar la misma.
• Deberá tener las dimensiones suficientes para permitir la colocación flexible del monitor, del teclado, documentos y accesorios, para que el operador pueda mantener una adecuada distancia visual a la pantalla. Se recomienda las de 180×80 cm.
• Debe disponer de un espacio holgado debajo de la mesa de trabajo para que las piernas puedan moverse. Es recomendable que la altura libre alcance los 70 cm y que el ancho libre supere los 85 cm.
• Debe disponer de atril para colocar los documentos. Si no hay atril, al menos, los documentos deberán ser colocados de tal modo que se reduzcan al mínimo los movimientos incómodos de la cabeza y los ojos.
• La superficie de la mesa debe ser poco reflectante (acabados en mate, los brillantes pueden dar reflejos). En general son preferibles los colores suaves y deberían evitarse las superficies muy oscuras, que producen contrastes muy fuertes entre el tablero de la mesa y los documentos. Las superficies en gris, beige, crema o color madera natural, más o menos clara, proporcionan contrastes adecuados.
• Debe tener libre su perímetro para aprovechar bien la superficie de trabajo y permitir la movilidad del trabajador.
• Los bloques de cajones no deben estar fijos a la mesa, así el trabajador podrá colocarlos en la zona que más le convenga y aprovechará mejor la superficie de trabajo y deben disponer de topes de abertura de manera que no salgan todos al abrirlos, si no los poseen deben ser colocados para tales fines pequeños tacos de madera.

3. Reposapiés

• Las dimensiones recomendables del reposapiés son de 33 cm de profundidad, con una anchura de al menos 45 cm y una inclinación entre 10 y 25 grados. La superficie de apoyo debe ser antideslizante, así como la base del mismo, para evitar que acabe en el fondo de la mesa.

- **Reubicación de los puestos de trabajo:** se recomienda reubicar los escritorios y las consolas de los Sistemas de control para evitar el deslumbramiento de la luz natural que ingresa por las ventanas y que se ubican de espalda a los Puestos de Ingeniero de Operaciones y del Supervisor de Turno y de frente a los Operadores de Consola.
- **Establecer pausas para ejercicios de relajación:** realizar ejercicios de relajación muscular y estiramiento durante los descansos y alternar posturas de pie-sentado.

3.3. FACTORES PSICOSOCIALES

3.3.1. INTRODUCCION

Los factores psicosociales en el trabajo consisten en interacciones entre el trabajo, su medio ambiente, la satisfacción en el trabajo y las condiciones de organización, y por otra parte, las capacidades del trabajador, sus necesidades, su cultura y su situación personal fuera del trabajo. Todo ello puede influir en la salud, en el rendimiento y en la satisfacción en el trabajo.

Cuando los factores organizacionales y psicosociales de la Empresa y organizaciones son disfuncionales, provocan respuestas de inadaptación, de tensión, respuestas psicofisiológicas de estrés.

La tabla 49 muestra cómo los efectos de los factores psicosociales de estrés pueden afectar tanto a la salud psicológica como a la salud física a través de los mecanismos psicofisiológicos activados por el estrés.
<table>
<thead>
<tr>
<th>FACTORES DE ESTRÉS PSICOSOCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido del trabajo</td>
</tr>
<tr>
<td>Falta de variedad en el trabajo, ciclos cortos de trabajo, trabajo fragmentado y sin sentido, bajo uso de habilidades, alta incertidumbre, relación intensa.</td>
</tr>
<tr>
<td>Sobrecarga y ritmo</td>
</tr>
<tr>
<td>Exceso de trabajo, ritmo del trabajo, alta presión temporal, plazos urgentes de finalización.</td>
</tr>
<tr>
<td>Horarios</td>
</tr>
<tr>
<td>Cambio de turnos, cambio nocturno, horarios inflexibles, horario de trabajo imprevisible, jornadas largas o sin tiempo para la interacción.</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Baja participación en la toma de decisiones, baja capacidad de control sobre la carga de trabajo, y otros factores laborales.</td>
</tr>
<tr>
<td>Ambiente y equipos</td>
</tr>
<tr>
<td>Condiciones malas de trabajo, equipos de trabajo inadecuados, ausencia de mantenimiento de los equipos, falta de espacio personal, escasa luz o excesivo ruido.</td>
</tr>
<tr>
<td>Cultura organizacional y funcionales</td>
</tr>
<tr>
<td>Mala comunicación interna, bajos niveles de apoyo, falta de definición de las propias tareas o de acuerdo en los objetivos organizacionales.</td>
</tr>
<tr>
<td>Relaciones interpersonales</td>
</tr>
<tr>
<td>Aislamiento físico o social, escasas relaciones con los jefes, conflictos interpersonales falta de apoyo social.</td>
</tr>
<tr>
<td>Rol en la organización</td>
</tr>
<tr>
<td>Ambigüedad de rol, conflicto de rol y responsabilidad sobre personas.</td>
</tr>
<tr>
<td>Desarrollo de carreras</td>
</tr>
<tr>
<td>Incertidumbre o paralización de la carrera profesional baja o excesiva promoción, pobre remuneración, inseguridad contractual.</td>
</tr>
<tr>
<td>Relación Trabajo-Familia</td>
</tr>
<tr>
<td>Demandas conflictivas entre el trabajo y la familia bajo apoyo familiar. Problemas duales de carrera.</td>
</tr>
<tr>
<td>Seguridad contractual</td>
</tr>
<tr>
<td>Trabajo precario, trabajo temporal, incertidumbre de futuro laboral. Insuficiente remuneración.</td>
</tr>
</tbody>
</table>

Tabla 49: Factores de riesgo psicosocial

Los riesgos psicosociales perjudican a la salud de los trabajadores, causando estrés y a largo plazo enfermedades cardiovasculares, respiratorias, inmunitarias, gastrointestinales, dermatológicas, endocrinológicas, musculo esqueléticas y mentales.

En la Sala de Control, se observan dos factores fundamentales con respecto a los riesgos psicosociales: el 75% de los puestos de trabajo tienen un régimen de trabajo de turnos rotativos de 4 días de trabajo de 12 horas y 4 días de descanso, con rotación de turno diurno y nocturno y el ritmo de trabajo tiene una alta exigencia, responsabilidad y concentración que son propias de los
Puestos, debemos recordar que desde la Sala de Control de YPF Energía Eléctrica, se controla la generación y depende el abastecimiento de energía del 40% del noroeste argentino, con las presiones que ello implica.

![Fig. 23: Operador de consola de Sala de Control](image)

3.3.2. ANÁLISIS, EVALUACIÓN Y CUANTIFICACIÓN DEL RIESGO

Para el análisis de los Factores Psicosociales de la Sala de Control se procede a aplicar la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente” y la Nota Técnica “NTP 324: Cuestionario de chequeo para control de riesgos de accidente” del INSHT (Instituto Nacional de Seguridad e Higiene en el Trabajo, Ministerio de Trabajo y Asuntos Sociales de España):

- Se elabora el cuestionario de chequeo sobre el factor de riesgo aplicando la Nota Técnica “NTP 324: Cuestionario de chequeo para control de riesgos de accidente”
- Se cumple con el cuestionario de chequeo en el lugar de trabajo y se estima el nivel de deficiencia del cuestionario aplicado al factor de riesgo analizado (Tabla 50).
FACTORES PSICOSOCIALES

LUGAR: Sala de Control

EMPRESA: YPF Energía Eléctrica - Complejo de Generación Tucumán

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Se fomenta el trabajo en equipo y la comunicación efectiva en la organización.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se implementan herramientas para el aprendizaje y el desarrollo de nuevas habilidades del Operador.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. El Operador tiene conocimiento claro de las tareas asignadas a su puesto de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Se garantiza la estabilidad laboral y las condiciones de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se facilita la compatibilidad de la vida laboral y familiar.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. El Operador dispone de información y capacitación que le facilite la realización de sus tareas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se dispone de un Servicio de vigilancia de la salud.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. Se garantiza el diseño del puesto de trabajo considerando los ritmos de trabajo, la sobrecarga laboral y las exigencias mas estresantes del puesto.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9. La organización del trabajo evita que las tareas se efectúen con una presión temporal excesiva</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10. No hay tareas habituales que exigen una atención elevada durante períodos prolongados (mas dos o tres horas diarias)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11. Pueden hacerse pausas (auto administradas) para interrumpir las tareas repetitivas (relevamiento de variables pantallas)</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 6.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3, 8, 9, 10, 11.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 2, 4, 5, 7.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: DEFICIENTE (6).

Tabla 50: Cuestionario de chequeo NTP 324 – Factores Psicosociales
Se estima el nivel de exposición al riesgo.
Se estima el nivel de probabilidad a partir del nivel de deficiencia y del nivel de exposición.
Se contrasta el nivel de probabilidad a partir de datos históricos disponibles (accidentabilidad).
Se estima el nivel de riesgo a partir del nivel de probabilidad y del nivel de consecuencias.
Se establecen los niveles de intervención considerando los resultados obtenidos y su justificación socio-económica.
Se contrastan los resultados obtenidos con los estimados a partir de fuentes de información precisas y de la experiencia.

En la Tabla 51 se adjuntan los resultados de la Evaluación y cuantificación de los Factores Psicosociales en la Sala de Control, empleando la Nota Técnica “NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente”, del INSHT.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>NIVEL DE DEFICIENCIA</th>
<th>NIVEL DE EXPOSICION</th>
<th>NIVEL DE PROBABILIDAD</th>
<th>NIVEL DE CONSECUENCIA</th>
<th>NIVEL DE RIESGO</th>
<th>NIVEL DE INTERVENCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORES PSICOSOCIALES</td>
<td>DEFICIENTE (6)</td>
<td>4</td>
<td>MA-24</td>
<td>25</td>
<td>600</td>
<td>I</td>
</tr>
</tbody>
</table>

Tabla 51: Evaluación de Factores psicosociales – Sala de Control YPF Energía Eléctrica

Conclusiones

Como resultado de la evaluación de los factores psicosociales se determina que los mismos pueden tener una influencia significativa en la generación de riesgos para la seguridad y la salud de los Puestos evaluados.

El principal factor es el horario laboral; recordemos que el régimen de trabajo de estos Puestos; es de 4 días de trabajo (jornadas de 12 hs) y 4 días de descanso, con rotación de turnos diurnos y nocturnos.

Con respecto a este punto; cuando se realizaron entrevistas con el personal que se desempeña en la Sala de Control; la mayoría de las personas expresa que presenta trastornos en su salud como ser: trastornos de sueño, gastritis, apnea, diabetes, entre otras y de alguna manera lo asocian o relacionan con el régimen y turnos de trabajo.

Muchos de ellos expresan por ejemplo que; cuando completan cuatro días del turno noche, les resulta complicado durante los cuatro días de descanso...
acoplarse a la vida familiar y social y a su vez respetar los horarios de descanso para “prepararse” para el nuevo turno de cuatro días diurnos y viceversa.

Es decir que no solo se ve afectada su salud con las alteraciones del ritmo biológico y del sueño, sino también su rendimiento, la vida social y familiar (relación de trabajo y familia).

El otro factor que se destaca es la sobrecarga de trabajo y el esfuerzo intelectual que tienen dichos Puestos de trabajo, ya que cuando se produce una parada forzada o salida de servicio intempestiva de alguna unidad de generación, no solo deben controlar la situación operativa y resguardar la integridad de las máquinas, sino que también deben coordinar la intervención del Personal de mantenimiento para reparar la falla y responder las llamadas y consultas de la Secretaría de Energía, el Organismo Encargado del Despacho, Gerencia Comercial entre otros. Esto puede ocasionar estrés en el trabajador, ya que provoca desequilibrios o cambios fisiológicos, reacciones emocionales y cambios conductuales, para afrontar las demandas del medio laboral ante estas situaciones imprevistas.

Los trabajadores entrevistados también expresan no tener claro cuál es el plan de carrera para sus Puestos.

Cabe aclarar que la realización del trabajo nocturno puede influir en la magnitud de los riesgos a los que está expuesto el trabajador; ya que en la madrugada, el nivel de atención, la toma de decisiones, así como la rapidez y precisión de los movimientos se ven reducidos, aumentando la probabilidad de cometer errores y con ello sufrir accidentes.

Si bien YPF Energía Eléctrica cuenta con un Servicio de vigilancia de salud, no existen pruebas fehacientes de que los trastornos de salud de las personas efectivamente se deban al turno rotativo.

Por lo antes descripto, se considera que los Factores psicosociales son relevantes en la Sala de Control.

3.3.3. ESTRATEGIA DE INTERVENCION SOBRE EL RIESGO

• Realizar un estudio para determinar si el régimen laboral de 4X4 (12 hs - con rotación de turno diurno y nocturno) del personal en Sala de Control
tiene un efecto negativo sobre la salud de los trabajadores. Analizar la implementación de otro tipo de régimen laboral ya que estos cambios continuos en los hábitos de los trabajadores puede llegar a afectar la correcta ejecución de las tareas y la salud de las personas.
Si bien actualmente se tiende a realizar ciclos cortos (se recomienda cambiar cada dos o tres días), ya que de esta manera el ritmo biológico apenas llega a alterarse. Pero bajo estas condiciones, la vida familiar y social se hace difícil con un ritmo de rotación tan cambiante, por lo que puede existir una contradicción entre el punto de vista fisiológico y las necesidades psicosociales de los trabajadores.
Para los Puestos analizados se sugiere implementar turnos de 5 días de trabajo por siete días de descanso, lo que a su vez representaría la necesidad de incorporar un nuevo turno completo de 5 personas.
• Implementar la realización de talleres de prevención y control del estrés (dirigida por especialistas). Complementar con las medidas adoptadas en temas relacionados con abusos de sustancias y la alimentación saludable del personal.
• Establecer con el Servicio médico de vigilancia un seguimiento más específico sobre el Personal de Sala de Control que trabaja en turno.
CAPÍTULO 4: PROGRAMA INTEGRAL DE PREVENCIÓN DE RIESGOS LABORALES

4.1. PLANIFICACIÓN Y ORGANIZACIÓN DE LA SEGURIDAD E HIGIENE LABORAL

La Seguridad, Salud Ocupacional y Medio Ambiente en la Empresa, se desarrollará tomando como base, el objetivo prioritario de preservar la Seguridad y Salud de las personas y el Medio Ambiente de las comunidades.

Para alcanzar este objetivo la Dirección se compromete a:

- Promover y liderar programas Seguridad, Salud Ocupacional y Medio Ambiente, destinando los recursos necesarios y brindando las condiciones para que todos sus procesos sean planificados, ejecutados, controlados y mejorados continuamente.

- Capacitar y comprometer a todo su personal en el cumplimiento de los procedimientos correspondientes.

- Integrar en su estrategia los criterios de Seguridad, Salud Ocupacional y Medio Ambiente durante todo el ciclo de vida, asegurando la integridad de sus instalaciones, adoptando y desarrollando las mejores prácticas de la industria.

- Asegurar el cumplimiento de las obligaciones legales vigentes, adoptando estándares adecuados en los casos de ausencia de normativas aplicables.

- Promover una cultura de mejora continua, midiendo y evaluando el desempeño en Seguridad, Salud Ocupacional y Medio Ambiente, estableciendo, comunicando y revisando objetivos y metas.

- Reducir el impacto sobre el Medio Ambiente mediante la prevención de la contaminación, la disminución del consumo de recursos naturales, de las emisiones y la adecuada gestión de residuos.

- Contar con los planes de respuesta ante emergencias y crisis, para actuar en forma rápida y eficaz, minimizando sus consecuencias.
Comprometer a sus proveedores y contratistas en el cumplimiento de los requisitos aplicables en Seguridad, Salud Ocupacional y Medio Ambiente.

Respetar la cultura y los intereses de las comunidades en las que desarrolla sus actividades.

Mantener canales de comunicación abiertos y transparentes con los grupos de interés, comunicándoles sus conocimientos, programas e iniciativas.

Fomentar la innovación y la creatividad, promoviendo el aporte de nuevas ideas y proyectos de mejoras.

Con el correr de los años, la concepción de la seguridad ha variado significativamente hacia un cambio positivo relacionado con la valoración de la vida humana, la existencia de una clara relación entre los índices de satisfacción y motivación laboral y las mejoras en lo que atañe a la producción, la calidad y la reducción de lesiones. Esta modificación en el estilo de pensamiento, motivó a la Empresa al desarrollo paulatino y progresivo de Sistemas de Gestión de Seguridad y Salud Ocupacional, apuntando al objetivo ideal de “cero accidente – cero lesión”. Para mejorar el desempeño en Seguridad, Salud Ocupacional y Medio Ambiente es absolutamente indispensable un firme compromiso por parte de todos (personal propio, contratista y proveedores). Este compromiso debe contemplar tanto la actitud como la acción.

4.2. SELECCIÓN E INGRESO DE PERSONAL

El reclutamiento, selección e ingreso de personas será una actividad que se integrará en el ciclo de planificación de Recursos Humanos de la Empresa. Como criterio general, en el proceso de reclutamiento y selección de personal se deberá ejercer sistemáticamente una visión a medio y largo plazo de las competencias del candidato con vistas a su desarrollo profesional y al ajuste de sus expectativas con las potenciales rutas profesionales. Las etapas del Proceso son las siguientes:

4.2.1. Definición del perfil requerido.
El proceso de reclutamiento y selección de personal empieza con la definición del perfil requerido, definiendo las competencias o características que debe cumplir. Se determina que conocimientos, experiencia, habilidades, destrezas, valores y actitudes son requeridos. También podría incluir la capacidad para adaptarse al ambiente o a la cultura de la empresa.
Finalmente se procede a la validación de las funciones o requerimientos del perfil.

4.2.2. Búsqueda, reclutamiento o convocatoria.

La siguiente etapa consiste en la búsqueda, reclutamiento o convocatoria de los postulantes que cumplan con las competencias o características definidas en la etapa anterior.
La búsqueda puede ser interna o externa.
Si se define que la búsqueda sea externa o la misma no se haya podido cubrir de forma interna, el Analista de Reclutamiento puede utilizar las siguientes fuentes de reclutamiento.

- Búsquedas mediante: LinkedIn, Portales de empleo.
- Búsquedas a través de Consultoras externas, indicándoles los perfiles solicitados.

4.2.3. Evaluación

La tercera etapa del proceso de reclutamiento y selección de personal es la evaluación de los postulantes, con el fin de elegir al más idóneo para el puesto requerido.
Una vez preseleccionados los candidatos, el Analista de Reclutamiento los contacta telefónicamente para sondear: la adecuación al puesto, intereses, expectativas, remuneración pretendida, etc.
El Analista de Reclutamiento cita los candidatos para la evaluación o entrevista técnica a cargo del Referente de Línea del área solicitante de la posición, quien debe comprobar que el candidato tiene los conocimientos técnicos que el puesto requiere.
Cuando el Puesto a cubrir tenga reporte funcional, se incluye también una entrevista con el Jefe funcional y en caso que el Puesto tenga carrera técnica, se incluye una aprobación por el Revisor Técnico.

Una vez realizada la entrevista técnica, el Referente de Línea carga el informe de la misma y selecciona el / los candidatos para avanzar con el proceso.

El Analista de Reclutamiento efectúa la entrevista de RRHH para evaluar la adecuación al puesto del candidato y coordina a través de la consultora externa el examen psicotécnico y de competencias con el/los candidato/s preseleccionados por el Referente de Línea.

La consultora externa emite los siguientes informes:

- **Informe psicotécnico**: el resultado del mismo se clasifica en: Apto, Apto con observaciones y No apto. Dicho informe es confidencial, de uso exclusivo de RRHH.
- **Informe de competencias genéricas**: el cual contiene la evaluación de 3 a 5 competencias genéricas según el manual de la Empresa, las cuales son indicadas por el Analista de Reclutamiento según el perfil a evaluar.

Posteriormente, el Analista de Reclutamiento completa el informe de competencias enviado por la consultora externa con la recomendación de adecuación al puesto del candidato. Dicho informe indica si el candidato es Adecuado o No adecuado para la posición, y las recomendaciones para la Línea y se envía al Referente de Línea del área solicitante de la posición.

4.2.4. Selección y contratación

Si el Referente de Línea está de acuerdo con el informe de adecuación al puesto y con la incorporación del candidato finalista, comunica la aprobación a Reclutamiento. Para los casos en los cuales se hubiese avanzado con más de un candidato a evaluación, el Referente de Línea indica el candidato finalista seleccionado.

El Analista de Reclutamiento inicia la gestión de oferta económica y alta administrativa y solicita la aprobación del ingreso del candidato, supeditado al apto médico.
El examen médico para los candidatos externos es obligatorio y condición necesaria para su ingreso. El Analista de Reclutamiento gestiona el turno de acuerdo a la residencia del candidato.

El Servicio Médico debe enviar a Reclutamiento el resultado del examen médico.

Una vez recibidos el apto médico y la aprobación del ingreso, el Analista de Reclutamiento coordina con el candidato la fecha de ingreso a la Compañía. Luego informa la misma a todas las áreas involucradas.

4.2.5. Inducción y capacitación

Una vez finalizado el Proceso de selección, reclutamiento e ingreso con la contratación del nuevo ingresante, se procura que se adapte lo más pronto posible a la empresa y se desarrolla un Programa de inducción y capacitación para que se pueda desempeñar correctamente en su nuevo puesto.

El ingresante recibe información sobre:

- Visión, misión y valores de la Empresa.
- Organigrama.
- Política de Seguridad.
- Normas para el personal (horarios, asistencia, control de accesos, pago de haberes).
- Beneficios para el personal (vacaciones, seguro de vida, compensación de almuerzo, préstamos al personal).
- Conocimiento de la compañía y el negocio.
- Seguridad y medio ambiente (Identificación de peligros y evaluación de los Riesgos, Equipos de Protección Personal, LOTO (procedimiento de bloqueo y rotulado de equipos), Espacio Confinado, Trabajo en Caliente, Observaciones Preventivas, Seguridad Eléctrica, Plan de Emergencias, entre otras)
- Medio Ambiente (Evaluación de Aspectos e Impactos ambientales, Gestión de Residuos, Planes de Emergencia, No conformidades – Acciones Correctivas – Acciones Preventivas)
- Salud: Primeros Auxilios, Salud, Higiene Industrial, Hojas de Seguridad (MSDS).
- Recorrido en Planta (conocimiento de los sectores e instalaciones).

En el Procedimiento de Selección, Reclutamiento e ingreso de personal de la Empresa, se recomienda incluir en los exámenes médicos pre ocupacionales, el estudio médico de Nistagmografía, para los ingresantes a puestos de trabajo expuestos a trabajos en ambientes de altas temperaturas, en espacios confinados y/o en altura.

La Nistagmografía es un estudio de pruebas motoras oculares para la evaluación de enfermedad neurológica, otológica, y vestibular causantes de diagnóstico de vértigo.

4.3. CAPACITACION EN MATERIA DE S.H.L

La Ley Nacional N° 19.587/72 y su Decreto Reglamentario N° 351/79 de Higiene y Seguridad en el Trabajo; la Ley 24557/95 de Riesgos del Trabajo y su Decreto Reglamentario N° 170/96 y Resolución Superintendencia de Riesgos del Trabajo N° 38/96, especifican la obligatoriedad de capacitar a los distintos Niveles de la Organización Laboral en Prevención de Enfermedades Profesionales y Riesgos y Accidentes del Trabajo, en relación con aspectos generales y específicos de las tareas que se desempeñan.

Cabe destacar que uno de los aspectos fundamentales para la Prevención de Riesgos es tener conocimiento sobre los mismos y las distintas causas que pueden llegar a producir Accidentes y Enfermedades Laborales.

La Capacitación es obligatoria en la Empresa por medio de conferencias, cursos, seminarios y presentaciones, complementadas con material educativo gráfico, medios audiovisuales, avisos y carteles, que indiquen medidas de Seguridad, Salud Ocupacional y Medio Ambiente.

Debe tenerse en cuenta que la planificación en forma anual de los Programas de Capacitación abarcará los distintos Niveles y que los mismos deberán ser presentados a la Autoridad Competente de aplicación a su solicitud.

Los Planes Anuales de Capacitación deberán ser programados y desarrollados por los Servicios de Seguridad, Salud Ocupacional, Medio Ambiente y de Medicina del Trabajo, en las Áreas de su competencia y además, será conveniente contar con la participación de las A.R.T. (Aseguradoras de Riesgos del Trabajo), en lo referido a la Capacitación sobre Técnicas de Prevención de Riesgos.
Se recomienda implementar en la Empresa, un Procedimiento para Capacitación, formación y toma de conciencia en materia de Seguridad, Salud Ocupacional y Medio Ambiente.

CAPACITACION, FORMACION Y TOMA DE CONCIENCIA EN MEDIO AMBIENTE, SEGURIDAD y SALUD OCUPACIONAL

1. OBJETIVO

Establecer un mecanismo sistemático para implementar actividades que permitan asegurar la competencia del personal en forma continua en materia de Seguridad, Salud Ocupacional y Medio Ambiente. Describir como se detecta la necesidad y se desarrolla la capacitación del personal de la Empresa y las empresas contratistas para establecer una profunda concientización respecto a los aspectos ambiéntales y los peligros de salud y seguridad ocupacional involucrados en las actividades que desempeñan.

2. ALCANCE

Este procedimiento tiene aplicación en todas las operaciones e instalaciones donde se desarrollen actividades bajo el ámbito de YPF Energía Eléctrica S.A, siendo de aplicación tanto para el personal propio como para contratistas.

3. DEFINICIONES Y ABREVIATURAS

- **Aspecto ambiental**: elementos de las actividades, producto o servicio de la organización que puede interactuar con el medio ambiente.

- **Impacto ambiental**: cualquier cambio en el medio ambiente, sea adverso o beneficioso, total o parcialmente resultante de las actividades, productos o servicios de una organización.

- **Peligro**: fuente de energía, sustancia o situación con capacidad potencial de provocar daño.

- **Riesgo**: Posibilidad de que un peligro se concrete en daño.

- **SySO**: Seguridad y Salud Ocupacional.

- **RRHH**: Recursos Humanos.

4. DESCRIPCION
4.1. **Identificación de necesidades de capacitación**

4.1.1 **Cursos de capacitación general, dirigidos a todo el personal**
La detección de la necesidad de una capacitación general puede surgir por medio de las distintas herramientas de gestión de la Empresa. Por ejemplo, mediante las auditorías internas y las observaciones preventivas, en las que se detecte que un porcentaje significativo del personal no conoce los requisitos de Seguridad, Salud Ocupacional y Medio Ambiente. En estos casos la Dirección, en común acuerdo con los Responsables de las distintas áreas y el Área Seguridad, Salud Ocupacional y Medio Ambiente programarán la capacitación pertinente.

4.1.2 **Cursos de capacitación específicos, dirigidos a actividades específicas**
El Responsable de cada sector con personal a cargo, detecta la necesidad de capacitación adecuada y necesaria para que dicho personal pueda cumplir con una determinada tarea y en conjunto con el Área de Seguridad, Salud Ocupacional y Medio Ambiente, programa la capacitación.

4.2 **Capacitación a Contratistas.**
El Jefe del Área de Seguridad, Salud Ocupacional y Medio Ambiente, incluirá al personal que por primera vez ingrese a la Planta, en una Capacitación de Inducción con los conceptos básicos de SySO y de Medio Ambiente.

4.3 **Planificación de la Capacitación.**
La planificación de la Capacitación en SySO es propuesta anualmente por los Responsables de áreas y el Área Seguridad, Salud Ocupacional y Medio Ambiente.
La Capacitación es una responsabilidad de los Responsables de áreas quienes se hacen cargo de la misma con o sin apoyo interno o externo.
La Gerencia de Planta, con apoyo del Área de Seguridad, Salud Ocupacional y Medio Ambiente, aprueba el plan anual de capacitación en función de las necesidades.

4.4 **Evaluación de la eficacia de la capacitación**
Al finalizar el año calendario, se realiza una evaluación de la eficacia de la Capacitación recibida por el personal a cargo durante el año en curso y se informa el resultado de esta evaluación al sector de Recursos Humanos. Esta evaluación se utiliza como base para planificar las necesidades de capacitación del año siguiente.

En el caso de que los resultados de la evaluación no sean los deseados, se reprograma la Capacitación para el año siguiente, se hace una evaluación del proveedor, etc.

5. **CONTROL DE LOS REGISTROS.**

Se adjunta la planilla de asistencia a la capacitación Anexo V.

6. **ANEXOS**

Se adjunta planilla de Planificación anual de Capacitaciones Seguridad, Salud Ocupacional y Medio Ambiente, a dictar en la Empresa (Tabla 52):
<table>
<thead>
<tr>
<th>Código</th>
<th>Planificación anual de Capacitaciones de Medio Ambiente y SySO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMASS 02</td>
<td>Eventos no deseados</td>
</tr>
<tr>
<td>CMASS 03</td>
<td>Plan de Respuesta ante Emergencias –Simulacros. Prácticas.</td>
</tr>
<tr>
<td>CMASS 04</td>
<td>Protección Respiratoria.</td>
</tr>
<tr>
<td>CMASS 05</td>
<td>Manejo de Productos Químicos / Entrega de sustancias peligrosas</td>
</tr>
<tr>
<td>CMASS 06</td>
<td>Prevención y Control de Incendios. Matafuegos, teoría del fuego. Capacitación Brigadas.</td>
</tr>
<tr>
<td>CMASS 07</td>
<td>Conservación de la Audición.</td>
</tr>
<tr>
<td>CMASS 09</td>
<td>LOTO (Procedimiento de Bloqueo y Rotulado de equipos).</td>
</tr>
<tr>
<td>CMASS 10</td>
<td>Trabajos en Caliente.</td>
</tr>
<tr>
<td>CMASS 11</td>
<td>Protección Contra Caídas. Trabajo en Altura.</td>
</tr>
<tr>
<td>CMASS 12</td>
<td>Higiene Industrial</td>
</tr>
<tr>
<td>CMASS 13</td>
<td>Seguridad Eléctrica.</td>
</tr>
<tr>
<td>CMASS 14</td>
<td>Ingreso a Espacios Confinados.</td>
</tr>
<tr>
<td>CMASS 15</td>
<td>Manejo de Autoelevadores.</td>
</tr>
<tr>
<td>CMASS 16</td>
<td>Manejo más Seguro. Manejo Defensivo.</td>
</tr>
<tr>
<td>CMASS 17</td>
<td>Sistema de reportes de incidentes.</td>
</tr>
<tr>
<td>CMASS 18</td>
<td>Certificación y Operación de equipos de izajes</td>
</tr>
<tr>
<td>CMASS 19</td>
<td>Permisos de Trabajo.</td>
</tr>
<tr>
<td>CMASS 20</td>
<td>Excavaciones</td>
</tr>
<tr>
<td>CMASS 21</td>
<td>Autorización para trabajos restringidos</td>
</tr>
<tr>
<td>CMASS 22</td>
<td>Orden y limpieza –5S.</td>
</tr>
</tbody>
</table>

Tabla 52: Planificación anual de Capacitaciones de Medio Ambiente y SySO
4.4. INSPECCIONES DE SEGURIDAD

Introducción

Las inspecciones de seguridad periódicas en los sitios de trabajo, ayudan a mantener seguro el sitio, al identificar y corregir peligros. La frecuencia de las inspecciones depende del nivel de peligrosidad del sitio de trabajo; algunos sitios pueden necesitar inspección cada turno, cada día, trimestralmente o anualmente.

Se deben documentar las observaciones realizadas durante la inspección, los peligros identificados y las medidas de corrección tomadas en actas o libros de actas dispuestos en las organizaciones para tal fin.

Se recomienda implementar en la Empresa, inspecciones periódicas de seguridad (con frecuencia mensual).

A continuación se desarrolla el correspondiente Procedimiento:

PROCEDIMIENTO DE INSPECCIONES DE SEGURIDAD

1. OBJETIVO

El objeto de este procedimiento es describir la metodología para ejecutar inspecciones y revisiones de seguridad periódicas para identificar situaciones de riesgos presentes, controlar el cumplimiento de normas, verificar instalaciones y/o mejoras implementadas, usos de elementos de protección personal, implementación de procedimiento de bloqueo y rotulado, etc.

2. ALCANCE

Este procedimiento tiene aplicación en todas las operaciones e instalaciones donde se desarrollen actividades bajo el ámbito de YPF Energía Eléctrica S.A, siendo de aplicación tanto para el personal propio como para contratistas.

3. TIPOS DE INSPECCIONES

- **Rutina:** realizada por cualquier trabajador que detecte un riesgo o eventual “condición insegura” de trabajo.
- **Planificada:** realizada por el Supervisor de Medio Ambiente, Seguridad y Salud Ocupacional, quien realizará visitas periódicas
a las diferentes instalaciones y centros de trabajo en forma mensual.

Mediante las inspecciones se pueden detectar:

- **Condiciones inseguras**: operación de una instalación o circunstancia de trabajo que no cumple con las especificaciones o estándares de seguridad y por ende puede originar un accidente, en general son condiciones físicas o ambientales.

- **Actos inseguros**: es toda acción realizada por una persona fuera de las normas o estándares de seguridad y por ende puede originar un accidente.

- **Eficacia de las acciones correctivas**: detectados los riesgos y adoptadas las medidas correctivas correspondientes, mediante inspecciones posteriores se puede comprobar la eficacia de dichas medidas.

- **Problemas de diseño**: Permite detectar riesgos que no se tuvieron en cuenta al diseñar, modificar o reparar las instalaciones.

4. **METODOLOGÍA**

El Supervisor de Seguridad, Salud Ocupacional y Medio Ambiente; con los resultados obtenidos de las evaluaciones de riesgos, de la investigación de los accidentes e incidentes o de otras técnicas analíticas podrá planificar las inspecciones de seguridad correspondientes.

Las Inspecciones de seguridad se realizarán de acuerdo con la siguiente metodología:

4.1. **Preparación de la Inspección**:

- Determinación del objeto y alcance de la inspección (instalaciones, áreas, sectores).

- Determinación de la metodología (entrevistas, verificación de documentos, observaciones de campo).

- Designación del equipo de inspectores (personal de Seguridad, Salud Ocupacional y Medio ambiente y de otros sectores).

- Determinación de la fecha de realización de la auditoría.

- Comunicación con el Sector o Área inspeccionada.

- Obtención de información previa.
- Determinación de listas de verificación a utilizar.
- Reunión de preparación e información al equipo de Inspección.

4.2. Inspección en campo.

La inspección de seguridad, se llevará a cabo siguiendo las siguientes pautas:

- Anunciar e informar a los empleados que se va a realizar una Inspección de seguridad y que pueden esperar de la misma.
- Presentar al Equipo de Inspectores.
- Confirmar y aclarar el objeto y alcance de la Inspección.
- Explicar sobre la categorización de los hallazgos.
- Intercambiar información de interés.
- Establecer un clima de mutua confianza a partir del convencimiento de la utilidad de la Inspección.
- Realizar las actividades de verificación (documentales, testimoniales visuales).

4.3. Informe de la Inspección.

El Informe debe ser elaborado en el menor tiempo posible, estimándose, como plazo límite, un máximo de 1 (una) semana desde la finalización de la Inspección de Seguridad. El informe debe contener:

- Breve descripción (sector/área, fecha, inspectores, etc.)
- Alcance de la Inspección.
- Criterios empleados (normas, políticas, prácticas, etc.)
- Lista de actividades realizadas (reuniones, visitas, entrevistas, etc.)
- Personal entrevistado.
- Hallazgos (aspectos positivos, desvíos, oportunidades de mejora).
- Observaciones.
- Conclusiones.

4.5. ESTADISTICA E INVESTIGACION DE ACCIDENTES LABORALES

En toda organización es importante implementar un Procedimiento para la Investigación, análisis y registro de accidentes laborales.
La investigación de accidentes constituye un aporte esencial para la prevención de accidentes de índole laboral y de los resultados obtenidos se desprende la elaboración de medidas correctivas o nuevas normas de seguridad. Sus resultados ponen de manifiesto el porqué de los accidentes o incidentes, a través de la búsqueda de sus causas inmediatas y básicas. Por consiguiente, nos permite reformar o implantar nuevas normas de seguridad tendientes a evitar la repetición de hechos de la misma naturaleza. La Ley 19587 Ley de Higiene y Seguridad en el Trabajo y su decreto reglamentario 351/79 se refiere sobre el tema en el Capítulo 22: Estadísticas de accidentes y enfermedades del trabajo, Derogado por el Decreto 1338/1996, Artículo 2. A continuación se desarrolla un Procedimiento para la Investigación, análisis y registros de accidentes / incidentes implementados en YPF Energía Eléctrica S.A:

PROCEDIMIENTO PARA LA INVESTIGACION, ANALISIS y REGISTROS DE ACCIDENTES / INCIDENTES

1. **INTRODUCCION**

Los accidentes / incidentes laborales deben ser investigados, ya que de sus resultados se desprende la elaboración de medidas correctivas o nuevas normas de seguridad.

2. **OBJETIVO**

El objeto de este procedimiento es describir la metodología a seguir para la investigación, análisis e informe de accidentes e incidentes.

3. **ALCANCE**

Este procedimiento tiene aplicación en todas las operaciones e instalaciones donde se desarrollen actividades bajo el ámbito de YPF Energía Eléctrica S.A, siendo de aplicación tanto para el personal propio como para contratistas.

4. **RESPONSABILIDADES**

Gerente de Planta: es responsable de la implementación del presente Procedimiento
Supervisor: es responsable de la investigación de los incidentes de bajo potencial de riesgo.

Comisión Investigadora: es responsable de la investigación de los accidentes y los incidentes de alto potencial de riesgo.

5. DEFINICIONES

Accidente: es un acontecimiento no deseado que resulta en daño físico a las personas, y/o en daño a la propiedad y/o daño al medio ambiente.

Incidente: es un acontecimiento no deseado, el que bajo circunstancias ligeramente diferentes, podría haber resultado en lesión con o sin pérdida de días, y/o en daño a la propiedad y/o al medio ambiente, y/o daños materiales o al medio ambiente.

Daño: se produce daño cuando el contacto con una energía o sustancia supera la capacidad límite de las personas, propiedades o el ambiente.

Incidente con bajo potencial de gravedad: es aquél incidente como consecuencia del cual podrían haberse producido lesión sin pérdida de días, y/o daños materiales o al medio ambiente.

Incidente con alto potencial de gravedad: es aquel incidente como consecuencia del cual podrían haberse producido daños materiales y/o al medio ambiente y/o lesiones con pérdida de días

6. DESCRIPCION

6.1. Identificación

Todos los accidentes e incidentes deben ser informados, cualquiera sea su severidad o magnitud.

Todo el personal de la Empresa o de empresas contratistas; ante la observación de un accidente o incidente, debe informar en forma inmediata a su Supervisor y al Supervisor del área donde sucedió o se observó el hecho. Asimismo debe tomar las primeras acciones para mitigar los efectos adversos sin poner en riesgo su propia integridad ni la de otras personas.

6.2. Severidad.
La severidad del evento no deseado representa la magnitud de los daños que puede causar la materialización del riesgo que se está evaluando para una tarea o actividad laboral (Tabla 53).

<table>
<thead>
<tr>
<th>DAÑO A LAS PERSONAS</th>
<th>Lesiones</th>
<th>Enfermedades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leve (1)</td>
<td>Lesiones menores, irritación ocular, dérmica o de vías respiratorias superiores, cefaleas, quemaduras de 1° grado.</td>
<td>Molestias e irritación (por ejemplo, dolores de cabeza); enfermedades transitorias que producen incomodidad (por ejemplo: diarrea).</td>
</tr>
<tr>
<td>Moderado (2)</td>
<td>Lesiones que producen discapacidad temporal. Lesiones severas, fracturas, esguince, quemaduras de 2° y 3° grado.</td>
<td>Enfermedades transitorias (pérdida temporal de audición, dermatitis, problemas con brazos o piernas).</td>
</tr>
<tr>
<td>Grave (3)</td>
<td>Lesiones que conducen a discapacidad permanente de una persona. Amputaciones, fracturas complicadas.</td>
<td>Enfermedad que conduce a una discapacidad menor permanente, fracturas mayores.</td>
</tr>
<tr>
<td>Muy grave (4)</td>
<td>Una fatalidad.</td>
<td>Una fatalidad, una persona enferma con reducción de sus expectativas de vida o con discapacidad sustancial permanente.</td>
</tr>
<tr>
<td>Catastrófica (5)</td>
<td>Más de una fatalidad.</td>
<td>Más de una fatalidad, o más de una persona enferma con reducción de sus expectativas de vida o con discapacidad sustancial permanente.</td>
</tr>
</tbody>
</table>

Tabla 53: Severidad

6.3. Comunicación

Cuando en el hecho hay personas involucradas, su Supervisor debe concurrir inmediatamente al lugar donde ocurrió el evento.

Debe hacerse cargo de la situación, dar instrucciones precisas al personal específico y poner en marcha el Plan de Emergencia que aplique, cuando lo considere necesario.

Asimismo, debe apreciar el potencial de pérdida e informar a los niveles que correspondan según la severidad del caso.

<table>
<thead>
<tr>
<th>Comunicación inmediata, según la severidad del accidente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leve</td>
</tr>
<tr>
<td>Supervisor, Técnico al Jefe o Gerente de sector</td>
</tr>
</tbody>
</table>

Tabla 54: Comunicación según la severidad

6.4. Informe preliminar

El Supervisor del sector donde ocurrió el accidente o incidente (con la participación del supervisor directo de la persona involucrada), y una vez realizada la comunicación, debe:
- Reunir toda la información pertinente acerca del evento no deseado (por ejemplo: sacar fotografías, efectuar un croquis con las distancias del lugar del evento, anotar todas las observaciones realizadas).
- Relevar todos los comentarios espontáneos y/o entrevistas realizados en el lugar del evento (con la persona accidentada así como con los testigos, si los hubiere).
- Confeccionar un Informe Preliminar dentro de las 24 horas de sucedido el hecho.
- Coordinar con RRHH las comunicaciones que correspondan, según los requisitos legales aplicables.
- Tomar las acciones de contingencia necesarias para prevenir la repetición del evento, cuando sea posible.

La investigación de los “incidentes de alto potencial de riesgo” y de los accidentes deberá ser efectuada en el ámbito de una Comisión Investigadora conformada a tal efecto, la que deberá emitir el Informe Final dentro de los diez días de ocurrido el evento.

La Comisión Investigadora, dependiendo del tipo de evento no deseado ocurrido o que pudiera ocurrir, debe ser conducida por:

- el Gerente de Planta, en el caso de accidente de severidad grave o catastrófica,
- el Gerente del Sector involucrado, en el caso de accidente de severidad leve o moderada,
- el Responsable del Sector involucrado, en el caso de incidente/cuasi-accidente con alto potencial de riesgo.

La Comisión Investigadora debe estar conformada como mínimo por:

- Supervisor o técnico del accidentado (si es que lo hubo) y supervisor a cargo del área donde se produjo el evento no deseado
- Jefe o Gerente del sector
- Médico laboral (propió o contratado) de ser necesario
- Supervisor y/o el inspector del contrato respectivo, en caso de que el accidentado (real o potencial) pertenezca a una contratista
- Responsable de Seguridad e Higiene de la contratista, en el caso de que el accidentado (real o potencial) pertenezca a una contratista
- Auditores externos, dependiendo la magnitud del evento no deseado
- Jefe de Medio Ambiente, Seguridad y Salud local, como miembro asesor.

En el caso de un incidente de bajo potencial de riesgo, la investigación y el informe preliminar deben ser realizados por el Supervisor responsable por el trabajador involucrado o por el hecho o situación observada (según corresponda).

6.5. Metodología

La metodología a emplear para la “Investigación del accidente o incidente”, es la conocida como sucesos de eventos o “Árbol de causas”.

Método Árbol de causas:

Es un método resultante de un procedimiento científico que:
- Permite confrontarse a los hechos de manera rigurosa.
- Facilita una mejor gestión de la prevención y disminuye los accidentes.
- Establece una práctica de trabajo colectivo.
- Permite el análisis de los accidentes de trabajo en vistas a su prevención.
- Introduce una lógica diferente a aquella que va en búsqueda del “culpable”.
- Posibilita la detección de factores recurrentes en la producción de los mismos con el fin de controlar o eliminar los riesgos en su misma fuente.

 Según este método se describe al accidente como:
- El accidente es un síntoma del mal funcionamiento del sistema de trabajo en la empresa.
- El accidente es debido a la causalidad y no a la casualidad.
Además, el accidente no puede ser explicado por la infracción de normas de seguridad. Y toma como premisa que el origen de la inseguridad se debe a:

- No existen errores meramente humanos.
- No existen errores meramente técnicos
- La técnica es concebida por el hombre y controlada por él.
- La ausencia de seguridad tiene por tanto su origen humano, pero ese origen no siempre está allí donde se tiende a ponerlo espontáneamente.

El método de “árbol de causa” consta de tres fases:

<table>
<thead>
<tr>
<th>Primera Fase</th>
<th>Segunda Fase</th>
<th>Tercera Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recolección de la información</td>
<td>Construcción del árbol</td>
<td>Administración de la información</td>
</tr>
<tr>
<td>• Metodología para la recolección</td>
<td>• Método lógico-gráfico</td>
<td>• Medidas “correctivas”</td>
</tr>
<tr>
<td>• Calidad de la información</td>
<td>• Análisis de accidentes</td>
<td>• Medidas “preventivas”</td>
</tr>
</tbody>
</table>

Primera fase: Recolección de la información.
La recolección de la información debe ser realizada cuanto antes, en el lugar del accidente y por una persona que tenga conocimiento del trabajo y de su forma habitual de ejecución.

Se debe:

- Recolectar hechos concretos y objetivos y no interpretaciones y juicios de valor
- Utilizar un cuadro de observación que descompone la situación de trabajo en elementos de indagación.
- Investigar prioritariamente las variaciones, es decir “lo que no ocurrió como antes”
- Empezar por la lesión y remontar lo más lejos posible.

Definiciones:
- Hechos: son las afirmaciones, (igual que los datos). Pueden ser verdaderos o falsos. Las afirmaciones son muy características, son una unidad de información. Se encargan de describir o mentir.
- Interpretaciones: son una evaluación. Un hecho o un dato es evaluado por un cuerpo de conocimientos jurídicos, legislativos o científicos. Estos últimos son los que el conjunto acepta como norma.
- Los juicios: son evaluaciones pero con un calificativo. El que emite el juicio se constituye a él mismo como norma o ley. El juicio es lo “subjetivo”.

Por lo tanto: “SE DEBEN ANALIZAR HECHOS, NO INTERPRETACIONES O JUICIOS DE VALOR”

Segunda fase: Construcción del árbol de causas.
Se construye partiendo del suceso último (daño o lesión) y delimitando sus antecedentes inmediatos con el propósito de evidenciar gráficamente las relaciones entre los hechos que han contribuido a la producción del accidente. (Usar lista de hechos)

CONFECCIÓN DEL ARBOL
Debe confeccionarse de derecha a izquierda para luego poder ser leído de forma cronológica.

CODIGO GRAFICO

HECHO

HECHO PERMANENTE

VINCULACION

VINCULACION APARENTE
Para volcar un “hecho” y graficarlo en el árbol de causas, debemos establecer tres preguntas claves, y contestarlas en forma consecutivas, para luego establecer la relación entre ellos. Estas preguntas son:

1. ¿Cuál es el último hecho?
2. ¿Qué fue necesario para que se produzca ese último hecho?
3. ¿Fue necesario algún otro hecho más?

Relación lógica de los hechos

En la búsqueda de los distintos antecedentes de cada uno de los hechos se pueden presentar las siguientes situaciones:

Encadenamiento o eventos en cadena: Para que se produzca el hecho (x) basta con una sola causa (y) y su relación es tal que sin esta causa el hecho no se hubiera producido. Lo representaremos de esta manera:

```
Y → X
```

Conjunción: El hecho (x) no se produciría si el hecho (y) no se hubiera producido previamente, pero la sola aparición del hecho (y) no entraña la producción del primero, sino para que se produzca es necesario que concurran (y) y (z). Lo representaremos de esta manera:

```
Y

Z

X
```
(y) y (z) son hechos independientes, no están relacionados entre sí. Para que se produzca (y) no es necesario (z) y viceversa.

Disyunción: Dos o más hechos (x1, x2, xn) tienen una sola causa (y), ésta es necesaria y suficiente para que se produzcan (x1, x2, xn). Lo representaremos de esta manera:

\[X_1 \quad Y \quad X_2 \]

Hechos Independientes: También puede darse el caso de que no exista ninguna relación entre dos hechos, es decir que sean independientes. Lo representaremos de esta manera:

\[X \quad Y \]

Tercera fase: Administrar la información.

a) **Elaboración de medidas correctivas:** buscan prevenir de manera inmediata y directa las causas que han provocado el accidente.

b) **Elaboración de medidas preventivas:** generalizadas al conjunto de todas las situaciones de trabajo de la empresa.

El control y seguimiento de las medidas correctivas y preventivas adoptadas como consecuencia de la investigación del accidente en
cuestión, se registraran y se realizara seguimiento de las mismas. Esto deberá formar parte de la documentación de Seguridad y Salud Ocupacional que la Empresa deberá disponer sobre la misma.

6.6. Informe final
Concluida la investigación; el Responsable de la Comisión Investigadora, el Supervisor Responsable del trabajador accidentado o del sector donde ocurrió el evento, completa el reporte, adjunta el informe final correspondiente, y toda aquella documentación que considere necesaria (ej.: planos, fotos, documentación policial o judicial, etc.).

El Informe Final debe contener:
- Una evaluación de la eficacia en la aplicación del Plan de Emergencia, en el caso que éste haya sido aplicado.
- Una referencia a las solicitudes de las acciones correctivas necesarias para evitar la repetición del evento.

6.7. Acciones correctivas
En el Informe Final, la Comisión Investigadora debe definir las acciones correctivas que se deben tomar para eliminar las causas.

6.8. Análisis de los resultados
Los resultados e indicadores son analizados en el ámbito de las reuniones de Revisión por la Dirección.

6.9. Lecciones aprendidas
Una vez concluido el informe final de los accidentes y/o incidentes, el Área de Medio Ambiente, Seguridad y Salud de YPF Energía Eléctrica S.A, lo remite a la Gerencia Corporativa de Seguridad. Luego de la evaluación de estos informes, el Área de Seguridad, Salud Ocupacional y Medio Ambiente de la Empresa, genera cuando corresponda, las alertas de seguridad necesarias. Asimismo, registra en un informe el resultado de este análisis, que incluye las acciones, los responsables y los plazos que correspondan.

7. CONTROL DE LOS REGISTROS.
<table>
<thead>
<tr>
<th>Identificación</th>
<th>Forma y lugar de archivo</th>
<th>Responsable</th>
<th>Acceso</th>
<th>Tiempo de retención</th>
<th>Disposición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informe preliminar</td>
<td>Reporte electrónico en unidad de red</td>
<td>Supervisor o Técnico involucrado</td>
<td>Público</td>
<td>Indefinido</td>
<td>-</td>
</tr>
<tr>
<td>Informe final</td>
<td>Reporte electrónico en unidad de red</td>
<td>Responsable de la Comisión investigadora</td>
<td>Público</td>
<td>Indefinido</td>
<td>-</td>
</tr>
<tr>
<td>Alerta de seguridad</td>
<td>Reporte electrónico en unidad de red</td>
<td>Área de Medio Ambiente, Seguridad y Salud</td>
<td>Público</td>
<td>Indefinido</td>
<td>-</td>
</tr>
<tr>
<td>Informe de Lecciones aprendidas</td>
<td>Reporte Electrónico en unidad de red</td>
<td>Área de Medio Ambiente, Seguridad y Salud</td>
<td>Público</td>
<td>Indefinido</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 55: Control de registros de Investigación de accidentes

Estadística de accidentes

Los índices se desarrollan para establecer comparaciones de forma directa entre categorías de una misma variable.

Los índices de accidentes que se presentan son los recomendados e indicados por la XIII Conferencia Internacional de Estadígrafos del Trabajo y adoptados por la Superintendencia de Riesgos del Trabajo (S.R.T). La Organización Internacional del Trabajo (OIT) recomienda que el cálculo de los índices sólo considere los accidentes de trabajo y enfermedades profesionales con baja laboral.

Se recomienda implementar en YPF Energía Eléctrica S.A los siguientes índices de accidentes:

Indice de incidencia: Expresa la cantidad de casos notificados por el hecho o en ocasión del trabajo en un período de 1 (un) año, por cada mil trabajadores cubiertos:

\[
\text{Indice de Incidencia} = \frac{\text{Casos notificados} \times 1.000}{\text{Trabajadores cubiertos}}
\]
Indice de gravedad: los índices de gravedad calculados son dos, no excluyentes, pero sí complementarios:

1. **Indice de pérdida:** el índice de pérdida refleja la cantidad de jornadas no trabajadas en el año, por cada mil trabajadores cubiertos:

 \[
 \text{Indice de Pérdida} = \frac{\text{Jornadas no trabajadas} \times 1.000}{\text{Trabajadores cubiertos}}
 \]

2. **Duración media de las bajas:** la duración media de las bajas indica la cantidad de jornadas no trabajadas en promedio, por cada trabajador damnificado, incluyendo solamente aquellos con baja laboral:

 \[
 \text{Duración media} = \frac{\text{Jornadas no trabajadas} \times 1.000}{\text{Trabajadores damnificados con bajas laborales}}
 \]

Indice de incidencia en fallecidos: expresa la cantidad de trabajadores damnificados que fallecen por el hecho o en ocasión del trabajo en un período de un año, por cada un millón de trabajadores cubiertos, en ese mismo período.

 \[
 IM = \frac{\text{Trabajadores fallecidos} \times 1.000.000}{\text{Trabajadores cubiertos}}
 \]

Indice de letalidad: difiere de la definición de índice de incidencia en fallecidos (mortalidad), ya que su denominador no es trabajadores cubiertos, sino casos.
4.6. ELABORACION DE NORMAS DE SEGURIDAD

En las organizaciones puede ocurrir que la normativa legal vigente no puede descender a las condiciones de trabajo concretas que se dan en cada industria, proceso, servicio o en cada puesto de trabajo en particular.

Por este motivo en las organizaciones suelen implementarse documentos internos que indican una manera obligada de actuar, denominados Normas de seguridad.

Las Normas de seguridad se definen como la regla que resulta necesario promulgar y difundir con la anticipación adecuada y que debe seguirse para evitar los daños que puedan derivarse como consecuencia de la ejecución de un trabajo.

En YPF Energía Eléctrica S.A se implementan las siguientes Normas de Seguridad entre otras:

- Utilización equipos y elementos de izajes (Anexo VI).
- Seguridad Eléctrica (Anexo VII).
- Equipos de protección personal (Anexo VIII)

4.7. PREVENCIÓN DE ACCIDENTES “IN ITINERE”

Es el accidente ocurrido al personal en relación de dependencia con YPF Energía Eléctrica S.A, o con las empresas contratistas o subcontratistas en el trayecto o camino habitual, cuando se traslada del trabajo a su casa o viceversa (antes de comenzar y después de haber terminado la jornada laboral).

La Legislación Laboral vigente lo contempla en la Ley 24557, Riesgos del Trabajo, Capítulo III Contingencias y Situaciones cubiertas, Artículo 6:

1. Se considera accidente de trabajo a todo acontecimiento súbito y
violent or occurred by the incident or in occasion of the work, or in the route between the domicile of the worker and the place of work, always and when the compensated person no interrupted or altered the route for reasons foreign to the work. The worker will be able to declare in writing before the employer, and this within seventy-two (72) hours before the insurer, that the itinerary is modified for reasons of study, attendance to another employment or care of a direct relative ill and not cohabitant, having to present the pertinent certificate to the request of the employer within the (3) business days required.

It is considered that the main causes of traffic accidents in Argentina are:

- Excess of speed
- Consumption of alcohol or drugs while driving.
- Night driving or with fatigue
- Lack of use of seatbelt
- Use of cell phone.
- No use of helmet in motorcycles, motorbikes or bicycles
- Violation of red light
- Circulation of contraflow
- Lack of lights.

Recomendaciones para conductores:

- Do not drive tired or sleepy.
- Reduce speed at intersections, even if it is your turn.
- Use turn signals.
- Check the vehicle periodically.
- Utilice las luces bajas en los días de niebla o lluvia.
- Mantenga las luces bajas (no encandile).
- Respete los límites de velocidad.
- Realizar las maniobras de adelantamiento por la izquierda.
- Evite el consumo de bebidas alcohólicas ante de conducir.
- Utilice las luces de guiño previo a los giros.
- No use el celular mientras conduce.
- Si desea conducir a poca velocidad, manténgase en el carril derecho.

Recomendaciones para peatones:
- Respete los semáforos.
- Al cruzar una calle, no corra y no se distraiga.
- Utilice la senda peatonal, si no estuviese señalada, cruce por la esquina.
- Verifique que no se acerque ningún vehículo desde ambos sentidos.
- No cruce entre vehículos estacionados.
- Nunca camine cerca del borde de una ruta o calle.
- No transite por las calles escuchando música o hablando por teléfono.

Recomendaciones para ciclistas y motociclistas:
- Conserve en buen estado su rodado.
- Respete a los peatones.
- No utilice celular o escuche música mientras maneja.
- Recuerde que en la calle usted está más expuesto que un automóvil.
- No circule con su bicicleta donde está prohibido. (Autopistas)
- Avise con suficiente antelación las maniobras que vaya a realizar.
- Cualquier chequeo o reparación de su rodado debe ser hecho en la vereda y con el rodado detenido.
- No circule en contramano.
- Circule por la derecha, cerca del cordón.
- Respete los semáforos y normas de tránsito.
- Tome el manubrio con las dos manos.
- Use casco.
- De ser posible, evite circular de noche. Al circular de noche, debe llevar un chaleco refractante.
- No se tome de otro vehículo para ser remolcado.
- Cuando llegue a una intersección, mire a ambos lados y luego cruce.
- Respete siempre las barreras o señales de los pasos a nivel.
- Acompáñe la velocidad del tránsito cuando maneje su moto.

Al analizar los accidentes in itinere, debemos considerar que aparte de los accidentes de tránsito, hay otros riesgos presentes en la vía pública que se deben considerar:

1. **Resbalones y caídas:** ocasionados por
 - Superficies resbaladizas (suelo húmedo, veredas con baldosas lisas, verdín en zanjas o desagües, aceite de vehículos sobre adoquines o asfalto, etc.)
 - Pozos no señalizados, alcantarillados abiertos (en muchos casos por robo de las tapas o rejillas).
 - Superficies irregulares, baldosas rotas, raíces de árboles, escombros, etc.

2. **Golpes:** ocasionados por:
 - Objetos que caen de altura (macetas, desprendimientos de material
de los edificios, caída de ramas).
- Postes de iluminación.
- Canastos de basura.
- Carteles.
- Ramas a baja altura.
- Puertas de vehículos, aprisionamiento por puertas giratorias, puertas automáticas de trenes, puertas fuell de colectivos, etc.
- Vehículos estacionados.
- Vehículos en movimiento (atropellamiento de bicicletas, motos, automóviles, colectivos, camiones, trenes, subtes).
- Otras personas.
- Aires acondicionados.
- Tapas de medidores de luz o gas abiertas.
- Puertas vidriadas
- Alambres (pueden ocasionar caídas pero también rasguños).

3. Riesgo eléctrico:

- Tapas tomacorrientes faltantes (cortos, quemaduras, descargas).
- Contacto con columnas metálicas, carteles, columnas de alumbrado público o semáforos con instalaciones defectuosas.
- Tapas abiertas o deterioradas de cualquier instalación eléctrica.
- Cables sueltos tirados.
- Pisar cajas esquineras

Debemos recordar que en YPF Energía Eléctrica S.A, el servicio de traslado del personal es realizado por una empresa de transporte y los traslados fuera de horarios por una empresa de remises.
Se recomienda verificar que las unidades de ambos servicios de transporte cumplan con las medidas de seguridad preestablecidas (antigüedad de las unidades, equipamiento de las unidades, verificación técnica vehicular, etc).
Por otra parte se recomienda que los conductores deban realizar cursos periódicos, teóricos y prácticos, sobre manejo defensivo
4.8. PLANES DE EMERGENCIA

A continuación se desarrolla el Plan de Emergencias Industriales implementado en YPF Energía Eléctrica S.A:

PLAN DE EMERGENCIAS INDUSTRIALES

1. **OBJETIVO**

Desarrollar un Plan de Acción ante Emergencias con el fin de disponer de una herramienta de gestión ejecutiva y práctica destinada a responder eficazmente ante emergencias que involucren incendios, explosiones, contaminación al medio ambiente, y/o accidentes laborales.

2. **ALCANCE**

Este procedimiento tiene aplicación en todas las operaciones e instalaciones donde se desarrollen actividades bajo el ámbito de YPF Energía Eléctrica S.A, siendo de aplicación tanto para el personal propio como para contratistas.

3. **LEYES, NORMAS Y REGLAMENTACIONES DE APLICACIÓN**
 a. Internacional

1. Incendio
 - NFPA 600 Standard on Industrial Fire Brigades (Norma para Brigadas contra incendios Industriales)
 - NFPA 1404 Fire Department Self Contained Breathing Apparatus Program. (Norma para entrenamiento de protección respiratoria del Departamento de Bomberos)
 - NFPA 1500 Standard on Fire Department Occupational Safety and Health Program. (Norma para el Programa de Seguridad y Salud Ocupacional)
 - NFPA 1971 Standard on Protective Ensemble for Structural Fire Fighting. (Norma sobre vestimenta de protección para combate de incendios estructurales)
- NFPA 1976 Standard on Protective Ensemble for Proximity Fire Fighting. (Norma sobre vestimenta de protección para combate de incendios de proximidad)
- NFPA 1981 Standard on Open Circuit Self Contained Breathing Apparatus for Fire Fighters. (Normas de aparatos respiratorios autónomos de circuito abierto para combate de incendios)
- NFPA 1403 Standard on Live Fire Trainings Evolutions. (Norma sobre maniobras de entrenamiento con fuego vivo)
- NFPA 1911 Standard for Service Tests of Fire Pump Systems on Fire Apparatus. (Norma para pruebas de servicio de Sistemas de bomba de bombas de incendio)

b. Nacional

1. Salud, Seguridad y Medio Ambiente
 - LEY 24.051/92 - DTO. Medio Ambiente - Residuos Peligrosos. YPF ENERGIA ELECTRICA S A
 - LEY 19.587/72 - DTO. 351/79 Higiene y Seguridad en el Trabajo - Plantas de elaboración, transformación y almacenamiento de combustibles sólidos minerales, líquidos o gaseosos.
 - Res. SE. Nº 342/93 Planes de Contingencia - Estructura.
 - Ley Nac. Nº 22.428/81 Conservación del suelo.
 - Res. SRNyDS N°209/98 Reglamentación del art. 60 Dec. 666/97.
 - Comisión Asesora para la fauna silvestre y su hábitat.
- Ley Nac. Nº 23.778/90 Ratificación del Protocolo de Montreal relativo a las sustancias que agotan la capa de Ozono.
- Ley Nac. Nº 24.040/92 Control de fabricación y comercialización de sustancias agotadoras de la Capa de Ozono.

4. INTRODUCCION.

Al realizar la identificación y evaluación de los aspectos ambientales, los peligros y los riesgos en YPF Energía Eléctrica S.A; se han tenido y se tienen en cuenta todas las situaciones que tienen potencial de generar un incidente o emergencia tanto ambiental como de seguridad y/o salud ocupacional.

El Plan de Emergencias Industriales contempla:
- la forma en que se atienden las emergencias que involucren incendios, explosiones, contaminación al medio ambiente y/o accidentes laborales.
- los roles y responsabilidades del personal de la empresa.
- los materiales y equipos a ser utilizados.
- la verificación regular del estado de atención ante emergencias.
- la planificación y realización de simulacros.
- la documentación de incidentes y emergencias y su posterior análisis para tomar acciones correctivas y/o preventivas.

Para el diseño de este Plan de Emergencias Industriales, se consideraron todos aquellos riesgos que pueden dar origen a situaciones de emergencia durante la operación y se identificaron dos componentes básicos:
1) Las propiedades físico-químicas (combustibles, inflamables) de las sustancias y materiales presentes.
2) Hechos eventuales de tipo:
Internos, inherentes a procesos de: transporte y tratamiento de gas, generación y transporte de energía / almacenamiento de sustancias, productos y componentes eléctricos (fallas humanas o técnicas).

Externos, inherentes al medio circundante (desastres naturales, acciones sociales, emergencias en plantas vecinas, etc.).

En YPF Energía Eléctrica S.A, una emergencia se podría originar fundamentalmente a partir de una liberación de gas combustible (metano) desde gasoductos, plantas reguladoras, válvulas, generadores eléctricos y toda instalación complementaria que pueda liberar dicho gas combustible. Asimismo se considera la existencia de emergencias originadas a partir de la pérdida de otras sustancias inflamables y/o combustibles. También se consideraran otras emergencias producto de los propios riesgos laborales y naturales a los que se encuentran sometidos los trabajadores de las Centrales, entre las que se pueden mencionar sismos, accidentes de tránsito, caídas desde distintos niveles, quemaduras, picaduras de insectos u otros animales.

5. PLANIFICACION.

La Planificación de un programa de este tipo involucra el desarrollo de una Estructura de organización, en la cual se establecen los recursos humanos y materiales necesarios, como así también las responsabilidades de cada uno de los partícipes de una situación de emergencia (fig. 25)
Fig 25: Planificación de Plan de emergencia

Dicha estructura dispondrá de:

Recursos Humanos, conformado por el propio personal de YPF Energía Eléctrica SA que cumple funciones en la empresa y personal externo (Contratistas, Gendarmería, Policía, Salud Pública y personal de otras empresas).

Logística, conformada por los equipos y materiales necesarios y disponibles para actuar en consecuencia. Entre ellos se pueden mencionar:

- Equipos de intervención (monitores, autobombas, ambulancias, grúas, etc.)
- Materiales consumibles (aire para equipos de respiración autónoma, combustibles, alimentos, etc.)
- Agentes extintores (espuma, agua, polvo químico, etc.)

Roles en los cuales se establece la misión de cada individuo o grupo que desarrollará tareas durante una emergencia. Los mismos tendrán que
tener en cuenta la seguridad del personal que actúa en una emergencia, dado que un accidente puede traer efectos negativos durante el manejo de la misma.

Procedimientos Normalizados o guías básicas en donde se explica cómo realizar las principales tareas, necesarias para controlar y neutralizar una emergencia. Documentos típicos de las instalaciones constituidos por planos de layout, redes de incendio, ductos, manuales operativos de plantas, esquemas eléctricos.

Comunicaciones y alarmas entre los diferentes grupos de acción que componen el plan de emergencia. Además deberá contemplar todas las comunicaciones externas con los organismos de ayuda, medios de difusión, etc.

6. **ORGANIZACIÓN PARA LA EMERGENCIA.**

La estructura de organización del personal ante una emergencia constituye el soporte básico en el cual han de agruparse el conjunto de estrategias propuestas por el presente plan. Deberá ser dinámica y flexible, de forma de posibilitar futuras revisiones que permitan su actualización y la introducción de mejoras extraídas de los resultados de las distintas ejercitaciones y simulacros.

Posibilitará:

- Identificar al personal interviniente.
- Asignar funciones y responsabilidades (roles).

Poseerá configuración:

Internas: Compuesta por personal y directivos de la empresa. (Tabla 56)

Externa: Disponiendo de las posibilidades prestadas por instituciones de carácter público y/o privado que brindan apoyo ante cualquier incidente o emergencia. (Tabla 57)
Los recursos de ambas formas organizativas podrán combinarse de acuerdo a las características y magnitud de la emergencia producida o que se pueda producir.

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>FUNCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigada de Emergencia</td>
<td>Intervención</td>
</tr>
<tr>
<td>Coordinador de la emergencia</td>
<td>Comando</td>
</tr>
<tr>
<td>Grupo de Apoyo</td>
<td>Apoyo</td>
</tr>
<tr>
<td>Servicio Médico</td>
<td>Apoyo</td>
</tr>
<tr>
<td>Vigilancia</td>
<td>Apoyo</td>
</tr>
<tr>
<td>Radio para comunicaciones internas y externas (en salas de control)</td>
<td>Apoyo</td>
</tr>
<tr>
<td>Comité de Crisis</td>
<td>Decision</td>
</tr>
<tr>
<td>Grupo Asesor</td>
<td>Decision</td>
</tr>
</tbody>
</table>

Tabla 56: Organización interna
7. **ROLES y PROCEDIMIENTOS.**

Cuando se produce la interrupción de la actividad normal de producción, en un determinado sector de YPF Energía Eléctrica S.A, el personal (que interviene o no en la eventual emergencia) puede atravesar diferentes estados de situación, los cuales se detallan en la (Tabla 58 y 59)

<table>
<thead>
<tr>
<th>ESTADO DE SITUACIÓN</th>
<th>DESCRIPCIÓN</th>
<th>ACCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>Actividad normal de producción. Existen riesgos potenciales.</td>
<td>No hay intervención. Los grupos de emergencias están operativos y disponibles. Se efectúan simulacros, capacitación y mantenimiento de equipos.</td>
</tr>
</tbody>
</table>
| EMERGENCIA | Alteración de la actividad normal como consecuencia de un evento inesperado, que puede resultar en un daño, futuro o ya concretado. | Se inicia el ciclo de preintervención y se activan los mecanismos para confirmar los daños y evaluar la gravedad de la emergencia. Requiere:
 - Convocar a los grupos para emergencia
 - Avisar e informar
 - Evaluar situación para determinar las acciones a seguir
 - Decidir si existe una situación de Crisis |

Tabla 57: Organización externa

Tabla 58: Estados de situación
A continuación se adjuntan los roles definidos según el estado de situación correspondiente, (Tablas 60 y 61):

Tabla 59: Estados de situación

Tabla 60: Roles del personal según estado de situación
Los roles definidos en el Plan de emergencia son:

- **Coordinador de la Emergencia (CE):**
 Tiene la misión de comandar la situación de emergencia, estableciendo y coordinando la estrategia de intervención para neutralizar el peligro existente.
 Este cargo estará cubierto por un titular y un suplente:
 - Supervisor de Operaciones del Turno (Titular). 24 hs de cobertura.
 - Operador (Suplente). Un operador de la Brigada toma el puesto (dicho rol se asignará luego de evaluar desempeños en simulacros).

- **Chofer de Vehículo de Traslado y Equipo Médico Disponible**
 Estará a cargo de brindar el apoyo logístico y operativo necesario, para la atención de accidentados, dedicándose al suministro de atención y medicamentos. Responderá al Coordinador de Emergencia.
 Su intervención estará supeditada a las necesidades que se originen durante la emergencia.
 Estará integrado por el Servicio Médico de las Centrales, compuesto por:
 DIURNO:

<table>
<thead>
<tr>
<th>ESTADO DE SITUACION</th>
<th>GRUPOS DE ACCION</th>
<th>RESTO DEL PERSONAL / CONTRATISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisis</td>
<td>Ademas de los cuatro grupos convocados para la situación de emergencia, se constituye:</td>
<td>En horario nocturno, el Comité de Crisis es convocado por el CE.</td>
</tr>
<tr>
<td></td>
<td>Comité de Crisis</td>
<td>A puntos de Reunión.</td>
</tr>
<tr>
<td></td>
<td>Grupo Asesor (a requerimiento del Comité de Crisis)</td>
<td></td>
</tr>
</tbody>
</table>
- Médico en Planta Lu a Vie 12 a 13 hs y mediante celular el resto del tiempo.
- Enfermero planta (Lu a Vie 8 a 17 hs y 24 hs los días de mantenimiento).
- Chofer de ambulancia propia para traslado a Hospital o Centro de Atención.

NOCTURNO y FINES DE SEMANA:
- Chofer de ambulancia propia traslado a Hospital o Centro de Atención
- Médico en San Miguel de Tucumán, mediante celular.

Encargado Táctico y Brigada de Emergencia
La Brigada de Emergencia constituye la primera línea de defensa activa durante el desarrollo de una emergencia. Actúa en eventos originados en cualquiera de las dos Centrales. La Brigada de Emergencia está compuesta por la Brigada de Intervención (llamados “La Brigada”), además del Encargado Táctico de la Brigada y los Operadores de Sala de Control. Todos responden al Coordinador de la Emergencia.

- **Encargado Táctico**
 - **DIURNO:** Supervisor de Medio Ambiente (Titular) - Supervisor Seguridad y Salud Ocupacional (Suplente)
 - **NOCTURNO:** Un operador de la Brigada toma el puesto. (Dicho rol de asignará luego de evaluar desempeños en simulacros).

- **Brigadistas** (entrenados tanto para incendios como para rescate)

- **Operadores de planta y personal de vigilancia. Asignados anteriormente.** (Nota: hasta ahora hay 9 capacitados entidades de lucha contra incendio, se incorporarán más).

DIURNO: 3 guardias – 5 operadores.
NOCTURNO: 3 guardias – 2 operadores.
Asignados anteriormente.

- Operadores de Salas de Control

DIURNO Y NOCTURNO:
Operadores de Sala (2 operadores en Central Tucumán).
Ambos Operadores en Central Tucumán pueden realizar idénticas funciones

- Grupo de Apoyo
Este grupo tendrá la función de proveer los recursos necesarios (cuerdas, iluminación, energía eléctrica, elementos de contención y almacenamiento de derrames, etc) como así también administrar servicios de planta (corte y suministro de servicios) durante el desarrollo de una emergencia.
Está integrado por:
Personal de Operaciones: 5 personas (24 hs).

- Vigilancia (Portón principal)
Es el grupo encargado de controlar el ingreso y egreso de las personas y vehículos a las Centrales.
Este grupo estará formado por el personal contratado que cumple estos servicios en el Portón Principal de Acceso a las Centrales, ubicada en Central Tucumán.

DIURNO Y NOCTURNO:
- 5 personas (1 Supervisor de Vigilancia, 1 Ayudante, 3 recorredores).

- Comité de Crisis
El Comité de Crisis es la instancia máxima de soporte en la tarea de coordinar y gestionar el desarrollo de una emergencia, para retomar el normal funcionamiento de las instalaciones lo más pronto posible, con un mínimo de pérdidas y daños.
Los integrantes son:
<table>
<thead>
<tr>
<th>CARGO A CUBRIR</th>
<th>PUESTOS</th>
</tr>
</thead>
</table>
| DIRECTOR | DIURNO Y NOCTURNO:
| | Gerente de Planta (TITULAR) |
| | Gerente de Operaciones (SUPLENTE) |
| ASISTENTE DEL DIRECTOR | DIURNO Y NOCTURNO:
| | Gerente de Operaciones (TITULAR) |
| | Otro Gerente asignado eventualmente (SUPLENTE) |
| RESPONSABLE DE SEGURIDAD, HIGIENE Y MEDIO AMBIENTE | DIURNO Y NOCTURNO:
| | Supervisor de CMASS (TITULAR) |
| | (SUPLENTE): El suplente es el otro Supervisor de CMASS. (Podría estar afectado al combate en Planta, en tal caso interactuara con el CC, si le es posible, desde Radio). |
| RESPONSABLE DE COMUNICACIONES Y CONTACTO CON OTRAS EMPRESAS, BOMBEROS, POLICÍA Y OTROS | DIURNO Y NOCTURNO:
| | Supervisor de Operaciones de Turno (TITULAR) (ES EL MISMO COORDINADOR DE EMERGENCIAS) |
| | RRHH (SUPLENTE) |

8. **COMUNICACIONES.**
En un sistema de gerenciamiento de riesgos es posible reducir los riesgos potenciales y minimizar los daños resultantes, si se dispone de un sistema de alarmas y avisos tempranos que permitan actuar adecuadamente y sobre todo, rápidamente.
Para cumplir con dichos requerimientos en YPF Energía Eléctrica S.A. posee:
- Teléfonos de línea Telecom.
- Enlace de microonda de Telecom para datos.
- Celulares.
- Radio VHF para voz entre el personal de Planta.
La función de la Sala de Control en Central Tucumán, además de operar las instalaciones, es la de centralizar en forma rápida y segura todos los avisos sobre incidentes inesperados que puedan originar una situación de Crisis o Emergencia.

En la Sala de Control de Central Tucumán, se centralizan las comunicaciones y avisos de emergencia mediante radio y teléfonos. Las Salas de Control cuentan con pulsadores de Alarmas (Sirenas) para Aviso de Emergencia y Aviso de Evacuación (una sirena para Central Tucumán y Central San Miguel).

En la Sala de Central Tucumán existen dos operadores en forma permanente, uno para cada isla de control. Ambos pueden operar la Central de Comunicaciones (Radio) para cubrir avisos de emergencia al personal en las dos Centrales (Fig 26.)

![Diagrama](image)

Fig 26: Aviso de emergencia

Toda persona que se encuentre ante un problema que no pueda resolver inmediatamente y que consecuentemente genere una emergencia deberá informar al Operador de Sala de Control de Ciclo Tucumán y en su defecto al Coordinador de la Emergencia directamente.
EL CANAL 1 SE USA NORMALMENTE Y ES EL QUE QUEDA LIBRE PARA LAS COMUNICACIONES DE EMERGENCIA.

Todas las llamadas externas de ayuda, ya sea al personal de planta que esté en guardia o a los organismos externos tales como Defensa Civil o Policía, deberán realizarse desde la Sala de Control de Ciclo Tucumán, que dispondrá de un completo listado telefónico.

Es recomendable que las únicas personas autorizadas para difundir información y hacer declaraciones a los medios de comunicación sobre una emergencia en curso, sean el Director del Comité de Crisis o quien este designe.

Para la evacuación total deberá utilizarse la SIRENA GENERAL (3 Toques, de 10 seg cada uno). Esta operación será efectuada por acción manual desde la Sala de Control del Ciclo Tucumán, a requerimiento del Coordinador de la Emergencia.

El personal se tendrá que desplazar hacia los respectivos puntos de reunión indicados empleando caminos indicados por el Comité de Emergencia.

- PUNTO DE REUNION DE CENTRAL TERMICA TUCUMAN: Exterior del Portón de Acceso Principal a Central Térmica Tucumán
- PUNTO DE REUNION DE CENTRAL TERMICA SAN MIGUEL DE TUCUMAN: Exterior del Portón de Acceso Principal de Central Térmica San Miguel de Tucumán.

A continuación una fotografía explicativa de los Puntos de reunión y caminos de acceso (Fig.27)
Fig. 27: Puntos de encuentro Central Tucumán y San Miguel y caminos de acceso
CAPACITACION y MANTENIMIENTO.
La capacitación es un elemento de suma importancia en la implantación del Plan de Emergencia. El momento más desfavorable para aprender cómo se maneja una emergencia, es cuando se está ante la misma.
La capacitación es el tiempo dedicado a asegurar que hay un plan extensivo, que la logística requerida es la adecuada, esta operativa y bien mantenida y que el personal previsto está suficientemente entrenado.
El entrenamiento debe ser parte integral de los procedimientos de comprobación de efectividad del Plan.
Dichos procedimientos de comprobación y los simulacros de entrenamiento, deben ser diseñados con un doble objetivo:
- Mantener en perfecta disponibilidad todos los elementos físicos y humanos que integran el Plan de Emergencias.
- Comprobar si el Plan cumple con la finalidad para la cual fue diseñado.

Simulacros
La realización de simulacros es la forma más adecuada de comprobar la disponibilidad y efectividad de los mecanismos propuestos para manejar situaciones de emergencia. De esta forma no solo se ponen a prueba el Comité de Crisis y el Coordinador de la Emergencia, sino también al resto del personal involucrado y los mecanismos operativos e institucionales.
Un simulacro en gran escala (con evacuación general) probablemente sea requerido una vez al año para ensayar la capacidad de respuesta del Plan en su conjunto. La brigada, el grupo de apoyo y el equipo médico deberá ensayar periódicamente la aplicación de los procedimientos específicos del presente Plan (recomendable dos veces al año).
Luego del primer año de práctica de los simulacros podrán realizarse simulacros sin aviso anticipado.
Es de suma importancia establecer un adecuado mantenimiento y actualización del Plan para responder inmediatamente y sin dilaciones en el momento de producirse una emergencia.
El mantenimiento del Plan deberá considerar los cambios de puesto, altas y bajas del personal integrante de los diferentes grupos de acción, cambios en los materiales y unidades específicas, etc.
CONCLUSIONES

Hemos llegado a la instancia de enunciar las Conclusiones del Proyecto, donde debemos resumir los resultados de las tres etapas del mismo.

Antes de enunciar los resultados, debo aclarar que cuando decidí realizar el Proyecto sobre la Empresa en la que me desempeño; desde el primer instante y al planificar el trabajo, sentía que en un punto me encontraba en una posición incómoda. Ya que debía aplicar todo lo aprendido durante la Carrera y de la manera más objetiva posible en la Empresa en la que trabajo desde hace 12 años.

Por suerte durante el desarrollo de la primera etapa del Proyecto la “sensación desapareció” y todo comenzó a fluir con naturalidad. Tuve que entrevistar a “compañeros de trabajo” y recorrer instalaciones “tan conocidas”, con una visión distinta y con otros objetivos y premisas. Cabe destacar que todo el Personal de YPF Energía Eléctrica tiene muy incorporada la “Cultura de Seguridad” en su rutina de trabajo.

Luego de analizar las condiciones de trabajo y los riesgos laborales del Puesto del Operador de Campo seleccionado para la primera etapa; se determina que el riesgo de explosión e incendio, constituyen el principal punto a considerar por el Profesional Seguridad y Salud Ocupacional. Estos riesgos representan una situación crítica, debido a que los tres Sistemas de detección de incendio instalados en el Complejo de Generación son obsoletos y no están funcionando en la actualidad y el Sistema de extinción se activa manualmente, por lo que se recomienda la inmediata Instalación de un nuevo Sistema de detección y la automatización del sistema de extinción. Cabe aclarar que este tema representa un costo económico muy importante y se viene postergando por un tema presupuestario de la Empresa.

El riesgo de ruido también representa una situación crítica, ya que existen varios puntos de las instalaciones donde el Operador de Campo está expuesto a ruidos superiores a 85 dBA, por lo que se recomienda el uso de doble protección personal (protectores auditivos de copa y tapones) y evaluar la factibilidad técnica de aislar los equipos y/o fuentes emisoras de ruido en cuestión.

Los riesgos de caídas de personas a distinto nivel, riesgo psicosocial, contactos eléctricos, quemaduras por arco eléctrico y accidentes de tránsito también requieren corrección urgente, las recomendaciones y sugerencias técnicas
correspondientes se enuncian en el Apartado 2.5 de la Primera Etapa del Proyecto. El resto de los riesgos analizados y cuantificados, aparecen todos ellos con menor cuantía, si bien imponen la realización de medidas correctivas al respecto.

Con los resultados obtenidos del Método Lest, podemos observar que hay otras condiciones presentes en el Puesto de Trabajo de Operador de Campo que pueden afectar a la salud del trabajador como ser: apremio de tiempo y el tiempo de trabajo, para lo cual se recomienda implementar la realización de los talleres de prevención y control del estrés y realizar un estudio para determinar si el régimen laboral (turnos de 4 x 4), tiene un efecto negativo sobre la salud de los trabajadores.

En la Segunda Etapa del Proyecto se analizaron las condiciones generales de trabajo en la Sala de Control, tomando los riesgos más representativos: Protección contra incendios, ergonomía y riesgos psicosociales. Considero que la Sala de Control es el punto neurálgico del Complejo de Generación.

Sobre el riesgo de Protección contra incendios, llegamos a idéntica conclusión que en la Primera etapa (sistema de detección obsoleto), con respecto a los riesgos ergonómicos se recomienda realizar un estudio ergonómico de los puestos de trabajos, para adaptar el puesto a la persona, principalmente porque estos puestos tienen jornadas laborales de 12 horas.

Con respecto a los factores psicosociales analizados, se destacan la exigencia y la responsabilidad, ya que desde este Sector se maneja la generación de 400 MW aproximadamente que provee de energía al 40% del Noroeste Argentino.

Con respecto al análisis de la organización en general, cabe destacar la Gestión de la documentación que el Área de Seguridad, Salud Ocupacional y Medio Ambiente lleva adelante, recordemos que YPF Energía Eléctrica S.A, certificó la norma ISO 14001 “Sistema de Gestión Ambiental- Especificaciones y Directivas para su uso” y las normas OHSAS 18001 “Sistema de Gestión de la Seguridad y Salud Ocupacional”.

En la Tercera Etapa del Proyecto en el desarrollo del Programa Integral de Prevención de Riesgos Laborales, se destaca la Planilla anual de capacitación en materia Seguridad y Salud Ocupacional para todo el personal, la cual es muy completa y en un punto se considera “ambiciosa”.

159
Se recomienda replantear las estadísticas de accidentes y comenzar a implementar los índices detallados en esta Tercera etapa.

Cabe destacar también las Normas de Seguridad y el Plan de emergencia industriales implementados en la Empresa, entre las que se destacan el Bloqueo y rotulado de equipos (LOTO).

Debemos aclarar que la situación de crisis del mercado eléctrico afectó al Complejo de Generación desde el año 2004 y cuando en el 2013 YPF Energía Eléctrica adquiere el mismo, se reactivan proyectos e inversiones prioritarias para el Complejo como la adquisición del Sistema de Incendio, que estaban postergadas por una cuestión presupuestaria.

Como corolario, resaltamos, que la actuación del Profesional de Seguridad e Higiene laboral, es de vital importancia en una Organización y proporciona Seguridad para toda la Organización posibilitando mejorar los estándares de Calidad, Productividad y Trabajo Sin Riesgos.
AGRADECIMIENTOS

A Dios, por bendecirme e iluminarme para llegar a esta instancia

A mi familia, marido e hija, por la paciencia me tuvieron en el tiempo que “les quité” y su eterno e incondicional apoyo.

A mis padres, porque ambos me enseñaron el valor del estudio y me inculcaron la perseverancia para conseguir mis objetivos.

A la Institución Educativa (U.F.A.S.T.A.) en general, por darme la oportunidad de estudiar con la modalidad a distancia, ya que de otra manera no me hubiera sido posible trabajar y estudiar. Pero muy especialmente a “su esencia”, los profesores, quienes durante toda mi carrera han aportado con “su granito de arena” en cada materia, a mi formación.

A mi Director de proyecto, Ing. Jorge Niklison por su predisposición y crítica constructiva.

A mi Tutora durante el cursado de la materia Proyecto Final; Lic. Myriam Musumano, por su apoyo constante en una etapa particular de mi vida personal y porque me instó a no bajar los brazos. Gracias a ella llegué hasta acá.

A Milagros Quinteros Fernández, compañera de trabajo y amiga quien me “cubrió” en el trabajo cuando necesité tiempo para dedicarme al Proyecto.
BIBLIOGRAFÍA

- Normas OSHAS 18.000 aplicada por la empresa
- OIT (1.999). Salud y Seguridad en el Trabajo. Ginebra.
- Lest, Método Global de Evaluación Ergonómica
- Rapid Entire Body Assessment: REBA Applied Ergonomics. Res. 295/03
- Toxicología Laboral “Criterios para la vigilancia de los trabajadores expuestos a Sustancias Químicas Peligrosas”.
- Superintendencia de Riesgo del Trabajo, Protocolo para la Medición de Ruido e Iluminación en el Ambiente Laboral, SRT, Res 85/2012.
- NTP 601: Evaluación de las condiciones de trabajo: carga postural. Método REBA (Rapid Entire Body Assessment)
- NFPA 70E | Norma para la Seguridad Eléctrica en Áreas de Trabajo.
- ANSI B56.1, Parte II, “Norma para Montacarga
- Resolución 202/95 del Ex Ministerio de Salud y Acción Social de la Nación (MSyAS).
ANEXOS

ANEXO I: Método NTP 330: Sistema Simplificado de Evaluación de Riesgos de Accidente”, del INSHT.

Descripción del método: el método utilizado permite cuantificar la magnitud de los riesgos existentes y con el fin de establecer prioridades al momento de corrección. Para ello se parte de la detección de las deficiencias existentes en los lugares de trabajo para, a continuación, estimar la probabilidad de que ocurra un accidente y, teniendo en cuenta la magnitud esperada de las consecuencias, evaluar el riesgo asociado a cada una de dichas deficiencias. En esta metodología consideraremos, según lo ya expuesto, que el nivel de probabilidad es función del nivel de deficiencia y de la frecuencia o nivel de exposición a la misma. El nivel de riesgo (NR) será por su parte función del nivel de probabilidad (NP) y del nivel de consecuencias (NC) y puede expresarse como: NR = NP x NC.

Cabe aclarar que este método de evaluación de riesgos, figura publicado en la Biblioteca Virtual de la Superintendencia de Riesgos del Trabajo (S.R.T.), aceptado por la misma como unos de los métodos válidos para tal fin. También figura como método de aplicación en el ámbito laboral, en múltiples documentos de la Organización Internacional del Trabajo (O.I.T.), organismo del cual la Argentina es miembro y adhiere a sus Convenios y Recomendaciones.

Alcance y restricciones del método: La información que nos aporta este método es únicamente orientativa. Cabría contrastar el nivel de probabilidad de accidente que aporta el método a partir de la deficiencia detectada, con el nivel de probabilidad estimable a partir de otras fuentes más precisas, como por ejemplo datos estadísticos de accidentabilidad o de fiabilidad de componentes. Las consecuencias normalmente esperables habrán de ser preestablecidas por el ejecutor del análisis.

1.3.1 Procedimiento del método

1. Consideración del riesgo a analizar.

2. Elaboración del cuestionario de chequeo sobre los factores de riesgo que posibiliten su materialización.

3. Asignación del nivel de importancia a cada uno de los factores de riesgo.
4. Cumplimentación del cuestionario de chequeo en el lugar de trabajo y estimación de la exposición y consecuencias normalmente esperables.

5. Estimación del nivel de deficiencia del cuestionario aplicado.

6. Estimación del nivel de probabilidad a partir del nivel de deficiencia y del nivel de exposición.

7. Contraste del nivel de probabilidad a partir de datos históricos disponibles.

8. Estimación del nivel de riesgo a partir del nivel de probabilidad y del nivel de consecuencias.

9. Establecimiento de los niveles de intervención considerando los resultados obtenidos y su justificación socio-económica.

10. Contraste de los resultados obtenidos con los estimados a partir de fuentes de información precisas y de la experiencia.

Nivel de deficiencia

Llamaremos nivel de deficiencia (ND) a la magnitud de la vinculación esperable entre el conjunto de factores de riesgo considerados y su relación causal directa con el posible accidente. Los valores numéricos empleados en esta metodología y el significado de los mismos se indican en la siguiente tabla.

<table>
<thead>
<tr>
<th>Nivel de deficiencia</th>
<th>ND</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy deficiente (ND)</td>
<td>10</td>
<td>Se han detectado factores de riesgo significativos que determinan como muy posible la generación de fallos. El conjunto de medidas preventivas existentes respecto al riesgo resulta ineficaz.</td>
</tr>
<tr>
<td>Deficiente (D)</td>
<td>6</td>
<td>Se ha detectado algún factor de riesgo significativo que precisa ser corregido. La eficacia del conjunto de medidas preventivas existentes se ve reducida de forma apreciable.</td>
</tr>
<tr>
<td>Mejorable (M)</td>
<td>2</td>
<td>Se han detectado factores de riesgo de menor importancia. La eficacia del conjunto de medidas preventivas existentes respecto al riesgo no se ve reducida de forma apreciable.</td>
</tr>
<tr>
<td>Acceptable (A)</td>
<td>-</td>
<td>No se ha detectado anomalía destacable alguna. El riesgo está controlado. No se valora.</td>
</tr>
</tbody>
</table>

-Determinación del Nivel de deficiencia

Aunque el nivel de deficiencia puede estimarse de muchas formas, consideramos idóneo el empleo de cuestionarios de chequeo que analicen los posibles factores...
veamos a continuación un ejemplo de un cuestionario de chequeo tipo para controlar periódicamente el riesgo de golpes, cortes y proyecciones con herramientas manuales, en un centro de trabajo, y en donde se indican los cuatro posibles niveles de deficiencia: MUY DEFICIENTE, DEFICIENTE, MEJORABLE y ACEPTABLE, en función de los factores de riesgo presentes. Una respuesta negativa a alguna de las cuestiones planteadas confirmaría la existencia de una deficiencia, catalogada según los criterios de valoración indicados.

<table>
<thead>
<tr>
<th>CUESTIONARIO DE CHEQUEO</th>
<th>SÍ</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las herramientas están ajustadas al trabajo a realizar</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>1.1. Las herramientas son de buena calidad</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>1.2. Las herramientas se encuentran en buen estado de limpieza y conservación</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2. La cantidad de herramientas disponibles es insuficiente en función del proceso productivo y personas</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3. Existen lugares y/o medios idóneos para la ubicación ordenada de las herramientas (panoles, cajas...)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4. Cuando no se utilizan las herramientas corrientes o punzantes, se disponen con los protectores adecuados</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5. Se observan hábitos correctos de trabajo</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5.1. Los trabajos se hacen de manera segura, sin sobreefuerzos o movimientos bruscos</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5.2. Los trabajadores están alineados en el manejo de herramientas</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5.3. Se usan equipos de protección personal cuando se pueden producir riesgos de proyecciones</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITERIOS DE VALORACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se valorará la situación como MUY DEFICIENTE cuando se haya respondido NO a una o más de las cuestiones: 5, 5.2, 5.3.</td>
</tr>
<tr>
<td>Se valorará la situación como DEFICIENTE cuando no siendo muy defectuoso, haya respondido negativamente a la cuestión 1.</td>
</tr>
<tr>
<td>Se valorará la situación como MEJORABLE cuando no siendo muy defectuoso ni defectuoso se haya respondido negativamente a una o más de las cuestiones: 1.1, 1.2, 2, 3, 5.1.</td>
</tr>
<tr>
<td>Se valorará la situación como ACEPTABLE en los demás casos.</td>
</tr>
</tbody>
</table>

A cada uno de los niveles de deficiencia se ha hecho corresponder un valor numérico adimensional, excepto al nivel "aceptable", en cuyo caso no se realiza una valoración, ya que no se han detectado deficiencias.

En cualquier caso, lo destacable es que es necesario alcanzar en nuestra evaluación un determinado nivel de deficiencia con la ayuda del criterio expuesto o
de otro similar.

Nivel de exposición

El nivel de exposición (NE) es una medida de la frecuencia con la que se da exposición al riesgo. Para un riesgo concreto, el nivel de exposición se puede estimar en función de los tiempos de permanencia en áreas de trabajo, operaciones con máquina, etc.

Los valores numéricos, como puede observarse en el siguiente cuadro, son ligeramente inferiores al valor que alcanzan los niveles de deficiencias, ya que, por ejemplo, si la situación de riesgo está controlada, una exposición alta no debiera ocasionar, en principio, el mismo nivel de riesgo que una deficiencia alta con exposición baja.

<table>
<thead>
<tr>
<th>Nivel de exposición</th>
<th>NE</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuada (SC)</td>
<td>4</td>
<td>Continuamente. Varios veces en su jornada laboral con tiempo prolongado.</td>
</tr>
<tr>
<td>Frecuente (CF)</td>
<td>3</td>
<td>Varios veces en su jornada laboral, aunque sea con tiempos cortos.</td>
</tr>
<tr>
<td>Ocasional (EO)</td>
<td>2</td>
<td>Alguna vez en su jornada laboral y con período corto de tiempo.</td>
</tr>
<tr>
<td>Esporádica (EE)</td>
<td>1</td>
<td>Irregularmente.</td>
</tr>
</tbody>
</table>

Determinación del nivel de exposición

Nivel de probabilidad

En función del nivel de deficiencia de las medidas preventivas y del nivel de exposición al riesgo, se determinará el nivel de probabilidad (NP), el cual se puede expresar como el producto de ambos términos:

$$NP = ND \times NE$$
Dado que los indicadores que aporta esta metodología tienen un valor orientativo, cabe considerar otro tipo de estimaciones cuando se dispongan de criterios de valoración más precisos. Así, por ejemplo, si ante un riesgo determinado disponemos de datos estadísticos de accidentabilidad u otras informaciones que nos permitan estimar la probabilidad de que el riesgo se materialice, deberíamos aprovecharlos y contrastarlos, si cabe, con los resultados obtenidos a partir del sistema expuesto.

Nivel de consecuencias

Se han considerado igualmente cuatro niveles para la clasificación de las consecuencias (NC). Se ha establecido un doble significado; por un lado, se han...
categorizado los daños físicos y, por otro, los daños materiales. Se ha evitado establecer una traducción monetaria de éstos últimos, dado que su importancia será relativa en función del tipo de empresa y de su tamaño. Ambos significados deben ser considerados independientemente, teniendo más peso los daños a personas que los daños materiales. Cuando las lesiones no son importantes la consideración de los daños materiales debe ayudarnos a establecer prioridades con un mismo nivel de consecuencias establecido para personas.

Como puede observarse en el siguiente cuadro, la escala numérica de consecuencias es muy superior a la de probabilidad. Ello es debido a que el factor consecuencias debe tener siempre un mayor peso en la valoración.

<table>
<thead>
<tr>
<th>Nivel de consecuencias</th>
<th>NC</th>
<th>Significado</th>
<th>Daños personales</th>
<th>Daños materiales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortal o Catastrófico (M)</td>
<td>100</td>
<td>1 muerto o más</td>
<td>Destructión total del sistema (dificil renovarlo)</td>
<td></td>
</tr>
<tr>
<td>Muy Grave (MG)</td>
<td>60</td>
<td>Lesiones graves que pueden ser irreparables</td>
<td>Destructión parcial del sistema (compleja y costosa la reparación)</td>
<td></td>
</tr>
<tr>
<td>Grave (G)</td>
<td>25</td>
<td>Lesiones con incapacidad laboral transitoria (IL.T.)</td>
<td>Se requiere paro de proceso para efectuar la reparación</td>
<td></td>
</tr>
<tr>
<td>Leve (L)</td>
<td>10</td>
<td>Pequeñas lesiones que no requieren hospitalización</td>
<td>Reparable sin necesidad de paro del proceso</td>
<td></td>
</tr>
</tbody>
</table>

-Determinación del nivel de consecuencias

Se observará también que los accidentes con baja se han considerado como consecuencia grave. Con esta consideración se pretende ser más exigente a la hora de penalizar las consecuencias sobre las personas debido a un accidente, que aplicando un criterio médico-legal. Además, podemos añadir que los costes económicos de un accidente con baja aunque suelen ser desconocidos son muy importantes.

Hay que tener en cuenta que cuando nos referimos a las consecuencias de los accidentes, se trata de las normalmente esperadas en caso de materialización del riesgo.

Nivel de riesgo y nivel de intervención

El cuadro adjunto permite determinar el nivel de riesgo y, mediante agrupación de los diferentes valores obtenidos, establecer bloques de priorización de las intervenciones, a través del establecimiento también de cuatro niveles (indicados en el cuadro con cifras romanas).
Los niveles de intervención obtenidos tienen un valor orientativo. Para priorizar un programa de inversiones y mejoras, es imprescindible introducir la componente económica y el ámbito de influencia de la intervención. Así, ante unos resultados similares, estará más justificada una intervención prioritaria cuando el coste sea menor y la solución afecte a un colectivo de trabajadores mayor. Por otro lado, no hay que olvidar el sentido de importancia que den los trabajadores a los diferentes problemas. La opinión de los trabajadores no sólo ha de ser considerada, sino que su consideración redundará ineludiblemente en la efectividad del programa de mejoras.

El nivel de riesgo viene determinado por el producto del nivel de probabilidad por el nivel de consecuencias. En el siguiente cuadro se establece la agrupación de los niveles de riesgo que originan los niveles de intervención y su significado.

<table>
<thead>
<tr>
<th>Nivel de intervención</th>
<th>NR</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4000-500</td>
<td>Situación crítica. Correctivo urgente.</td>
</tr>
<tr>
<td>II</td>
<td>500-150</td>
<td>Corregir y adoptar medidas de control.</td>
</tr>
<tr>
<td>III</td>
<td>120-40</td>
<td>Mejorar si es posible. Sería conveniente justificar la intervención y su rentabilidad.</td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
<td>No intervenir, salvo que un análisis más preciso lo justifique.</td>
</tr>
</tbody>
</table>

Contraste de los resultados obtenidos

Es conveniente, una vez tenemos una valoración del riesgo, contrastar estos resultados con datos históricos de otros estudios realizados. Además de conocer la precisión de los valores obtenidos podremos ver la evolución de los mismos y si las medidas correctoras, desde que se aplicaron, han resultado adecuadas.
ANEXO II: Cuestionarios de chequeo – NTP 324

PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: EXPLOSION

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las sustancias inflamables, gases y vaposres a presión se almacenen correctamente.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Las áreas de trabajo donde se acopian sustancias inflamables están señalizadas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Se dispone de extintores en las proximidades.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Existe prohibición de fumar en sectores de riesgo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Existe iluminación antiexplosiva en zonas de riesgo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Se utilizan herramientas antideflagrantes en zonas de riesgo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se mantiene la ropa de trabajo libre de grasas y suciedad.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8. Se dispone de permiso de trabajo debidamente cumplimentado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9. Se realizan mediciones de atmósferas explosivas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10. Se observan hábitos de trabajo correctos.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 8, 10.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3, 6, 7, 9.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 2, 4, 5.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: INCENDIO

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Los productos combustibles se almacenan correctamente.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>14. Se realiza un control exhaustivo de posibles fugas y/o derrames de productos inflamables.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>15. Existe prohibición de fumar en sectores de riesgo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>16. Se dispone de un sistemas fijos activo de detección de fuego</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17. Se dispone de extintores portátiles y bocas de incendio en número y distribución suficientes.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>18. Se cuenta con un Plan de emergencia para reducir al mínimo las posibles consecuencias en caso de siniestros.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>19. Conocen los trabajadores el uso correcto de extintores y otros sistemas de lucha contra incendio.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>20. Los extintores se revisan periódicamente por empresas certificadas</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>21. Existe compromiso de la Organización para hacer cumplir las medidas de la lucha contra incendios.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>22. La ropa de trabajo del Operador es ignífuga.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:
- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 6, 7, 9.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 2, 4, 5.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 3, 8, 10.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: DEFICIENTE (6)
CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Los equipos que producen ruidos se encuentran en recintos aislados.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Los equipos que producen ruidos se encuentran delimitadas en un área con suficiente espacio para una operación segura.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Existe señalización suficiente y adecuada sobre la exigencia en el uso de protección auditiva.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. El Operador expuesto a altos niveles de presión sonora cuentan con protección personal auditiva adecuada.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Se realizan monitores ambientales de ruido periódicos.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. La empresa cuenta con un Servicio de vigilancia a la salud de los trabajadores.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. Los trabajadores expuestos al ruido tienen información suficiente sobre los límites máximos de exposición al ruido para la jornada laboral</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 4.
- Se valora la situación de riesgo como DEFINCIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 2, 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 5, 7.
- Se valora la situación como ACEPTABLE (--) en los demás casos: 6.

RESULTADO: DEFICIENTE (6)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: CAIDA DE PERSONAS A DISTINTO NIVEL

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Los trabajadores reciben instrucciones para un ascenso y descenso seguro (sistema de sujeción tres puntos fijos de las extremidades u otros)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se supervisan y mantienen los dispositivos de acceso periódicamente.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Se utilizan equipos de protección individual para caídas a distinto nivel.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Las áreas de paso junto a zonas peligrosas están protegidas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Las instalaciones cuentan con dispositivos que permiten el acceso seguro (escaleras, rampas, pasarelas, etc)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se limita el acceso solamente por las zonas establecidas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se encuentra señalizada las zonas de acceso, con las indicaciones de prohibiciones, peligros y obligaciones para el personal.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. Las zonas de paso están libres de obstáculos</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9. La iluminación es apropiada (mayor a 200 luxes; sin deslumbramiento)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10. Existen dispositivos de iluminación de emergencia.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11. Se observan hábitos correctos de trabajo</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1, 3, 11.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 4, 6.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 5, 7, 8, 9, 10.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2)
CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El suelo es regular y uniforme y se encuentra en buen estado.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Los pasillos peatonales principales tienen un ancho de 1,20 m y los pasillos secundarios un ancho de 1m.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. El suelo no es de material especialmente resbaladizo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Las zonas de paso están delimitadas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. El suelo se mantiene limpio y exento de sustancias resbaladizas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Existen lugares destinados para la ubicación de materiales y herramientas que eviten la ocupación de las zonas de paso.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se observan hábitos de trabajo correctos (orden y limpieza)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. Los trabajadores utilizan calzado de protección personal adecuado.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9. La iluminación es apropiada sin deslumbramientos.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10. Existen dispositivos de iluminación de emergencia.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 7, 8.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 2, 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 4, 5, 6, 9, 10.
- Se valora la situación como ACEPTABLE (–) en los demás casos.

RESULTADO: DEFICIENTE (6).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: VIBRACIONES

<table>
<thead>
<tr>
<th>CUESTIONARIO DE CHEQUEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de Riesgo</td>
</tr>
<tr>
<td>1. Se realiza mantenimiento preventivo periódico de las máquinas para evitar rozamientos, holguras, etc., que aumenten el nivel de vibración generado.</td>
</tr>
<tr>
<td>2. Se observan medidas organizativas para reducir el tiempo de exposición a las vibraciones.</td>
</tr>
<tr>
<td>3. Se implementan sistemas de amortiguación en las instalaciones que atenúan las vibraciones.</td>
</tr>
<tr>
<td>4. Los equipos que producen vibraciones se encuentran en recintos aislados.</td>
</tr>
<tr>
<td>5. Se realizan monitores ambientales de vibraciones periódicos.</td>
</tr>
<tr>
<td>6. La empresa cuenta con un programa de vigilancia a la salud de los trabajadores</td>
</tr>
<tr>
<td>7. El Operador usa equipos de protección personal.</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1, 3, 7.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 2, 5.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 4, 6.
- Se valora la situación como ACEPTABLE (-) en los demás casos.

RESULTADO: MEJORABLE (2)
<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existe señalización adecuada para zonas de circulación vehicular.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Existen espacios de maniobra para los vehículos.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Las zonas de circulación peatonal están señalizadas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Existe señalización con los límites de velocidad de circulación y se respetan.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Los vehículos que circulan en Planta tienen menos de 8 años.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se efectúa el mantenimiento periódico indicado por el fabricante en los vehículos que circulan en Planta.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Los conductores de vehículos en Planta reciben capacitación periódica de manejo defensivo.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 4, 7.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 3, 6.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 5.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: MEJORABLE (2).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: ATRAPAMIENTO / APRISIONAMIENTO

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las partes móviles de las máquinas son inaccesibles durante su funcionamiento.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Las partes con elementos móviles tienen dispositivos de seguridad que impiden su apertura en funcionamiento.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Las máquinas con elementos móviles disponen de espacio libre suficiente para evitar que invadan pasillos u otras zonas de trabajo. Además, se señala la necesidad de respetarlo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Los trabajadores utilizan ropa de trabajo adecuada.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Las partes móviles de las máquinas cuentan con resguardos de protección (fijos y/o móviles)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 4, 5.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 2.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 3, 6.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: ACEPTABLE
CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La iluminación en las zonas de circulación y en los edificios de máquinas es apropiada (100 a 200 lux) sin deslumbramiento.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Se dispone de sistema de iluminación de emergencia.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Se utilizan gafas de protección adecuadas para evitar el riesgo de deslumbramiento en las tareas que se desarrollan en el exterior.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Las fuentes de iluminación se encuentran orientadas y distribuidas convenientemente.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Se observan hábitos correctos de trabajo.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 3
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 4.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: ACEPTABLE
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán
ACTIVIDAD: Ronda Operativa en Instalaciones Industriales
RIESGO: PROYECCION DE FLUIDOS A PRESION

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existe procedimientos para operación y purgado de equipos con fluidos a presión.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se realiza mantenimiento preventivo periódico de las máquinas y equipos (verificación de mangueras, tubos flexibles y manguitos de empalme, etc)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Los equipos cuentan con resguardos fijos de protección.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Se realiza un control exhaustivo de posibles fugas y/o derrames de fluidos a presión.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se observan hábitos de trabajo correctos.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se utiliza calzado de seguridad y EPP homologados.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 6.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 4.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: EXPOSICION A TEMPERATURAS AMBIENTALES EXTREMAS

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Se observan medidas organizativas para reducir el tiempo y la intensidad de exposición a temperaturas extremas (frío – calor).</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Existen sistemas de ventilación local con extracción, en edificios con alta producción de calor.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Se dispone de ambientes climatizados diseñados para permanencia del Operador durante el régimen de descanso, para reducir los índices de exposición al frío o calor.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Se asegura la existencia de agua potable disponible para la reposición de líquidos perdidos por la sudoración.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se dispone de un Servicio de vigilancia de la salud específica del Operador.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se programan descansos intermedios dentro de la jornada laboral para limitar la exposición del Operador a las condiciones extremas de frío y calor.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Los trabajadores tienen conocimiento sobre las condiciones básicas para prevenir un stress calórico.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. Se utiliza ropa de trabajo que evite la absorción térmica (calor) y adecuada para bajas temperaturas (frío)</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 7.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 4, 8.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas:1, 2, 3, 5, 6.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: ACEPTABLE
CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El Operador utiliza ropa de trabajo y EPP adecuados para los trabajos en el exterior (exposición al sol).</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se dispone de protector solar que contenga filtros UV-A, UV-B.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Las zonas de exposición a campos electromagnéticos se encuentran señalizadas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. El Operador recibe formación, instrucciones e información.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se dispone de un Servicio de vigilancia de la Salud.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se evitan las exposiciones necesarias.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se mantienen la distancia de seguridad entre la fuente y el receptor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 2, 7.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 3, 4, 5, 6.
- Se valora la situación como ACEPTABLE (- -) en los demás casos.

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: RIESGO PSICOSOCIAL

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Se fomenta el trabajo en equipo y la comunicación efectiva en la organización.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13. Se implementan herramientas para el aprendizaje y el desarrollo de nuevas habilidades del Operador.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>14. El Operador tiene conocimiento claro de las tareas asignadas a su puesto de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>15. Se garantiza la estabilidad laboral y las condiciones de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>16. Se facilita la compatibilidad de la vida laboral y familiar.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17. El Operador dispone de información y capacitación que le facilite la realización de sus tareas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>18. Se dispone de un Servicio de vigilancia de la salud.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>19. Se garantiza el diseño del puesto de trabajo considerando los ritmos de trabajo, la sobrecarga laboral y las exigencias mas estresantes del puesto.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 6.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3, 8.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 2, 4, 5, 7.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: DEFICIENTE (6)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Ronda Operativa en Instalaciones Industriales

RIESGO: QUEMADURAS

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Se observan procedimientos de trabajo seguro en los trabajos en proximidad de superficies calientes.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Las superficies calientes se encuentran aisladas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Las áreas con superficies calientes se encuentran señalizadas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Se utilizan equipos de protección individual en caso de manipular equipos o superficies calientes.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 4.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 3.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2).
CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El Operador recibe información sobre los riesgos ergonómicos a los que se encuentra expuesto (posturas forzadas, aplicación de fuerza.)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Se observan medidas organizativas para fomentar la realización de pautas de trabajo seguro para evitar los sobreesfuerzos producidos por la adopción de posturas forzadas o por la aplicación de fuerzas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Se fomentan pausas en el trabajo para realizar ejercicios de relajación.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se dispone de un Servicio de vigilancia de la Salud.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se observa orden y limpieza en el área de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se adapta el trabajo a la persona en cuanto a la concepción del puesto, así como a la elección de los equipos y métodos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 2.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3, 7.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 4, 5, 6.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Uso de herramientas manuales

RIESGO: CAIDAS DE OBJETOS POR MANIPULACION

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La forma y dimensiones de las herramientas facilitan su manipulación.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Las herramientas están limpios de sustancias resbaladizas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. El personal utiliza calzado de seguridad normalizado.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. El personal está adiestrado en la manipulación correcta de herramientas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. El nivel de iluminación es el adecuado en la manipulación.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se utilizan herramientas cuya manipulación entraña riesgos de cortes, caídas de objetos o sobre esfuerzos.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. Las herramientas son de buena calidad y se encuentran en estado de limpieza y conservación.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 3, 4, 7.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 5, 6, 8.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Uso de herramientas manuales

RIESGO: PROYECCIONES CON HERRAMIENTAS MANUALES

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las herramientas están ajustadas al trabajo a realizar</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Las herramientas son de buena calidad</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Las herramientas se encuentran en buen estado de limpieza y conservación</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Los trabajos se hacen de manera segura, sin sobre esfuerzos o movimientos bruscos</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Los trabajadores están adiestrados en el manejo de herramientas</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Se usan equipos de protección personal cuando se pueden producir riesgos de proyecciones</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. El nivel de iluminación es el adecuado.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:
- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 4, 5, 6.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 3, 7.
- Se valora la situación como ACEPTABLE (-) en los demás casos:

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Uso de herramientas manuales

RIESGO: GOLPES, CORTES O CHOQUES CON OBJETOS

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las herramientas están ajustadas al trabajo a realizar.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.1 Las herramientas son de buena calidad.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.2 Las herramientas se encuentran en buen estado de limpieza y conservación.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. La cantidad de herramientas disponible es insuficiente en función del proceso constructivo y personas</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Existen lugares y/o medios idóneos para la ubicación ordenada de las herramientas (paneles, cajas).</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Cuando no se utilizan las herramientas cortantes o punzantes, se disponen con los protectores adecuados.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.1. Los trabajos se hacen de manera segura, sin sobre esfuerzos o movimientos bruscos.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.2. Los trabajadores están adiestrados en el manejo de herramientas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.3. Se usan equipos de protección personal cuando se pueden producir riesgos de proyecciones.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 5.2, 5.3.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1.1, 1.2, 2, 3, 5.1.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Movilización de cargas suspendidas/ Materiales estibados

RIESGO: CAÍDAS DE OBJETOS POR DESPLOME

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Los materiales se almacenan en lugares delimitados y destinados para esta finalidad.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Las zonas de almacenajes se encuentran señalizadas</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Las estanterías se encuentran fijadas a la pared</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Las cargas más pesadas se almacenan en los estantes inferiores o centrales.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se utilizan medios de sujeción de cargas adecuados</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. La estanterías se encuentran sobrecargadas</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7. Se utiliza calzado de seguridad y EPP homologados</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8. Se observan correctos de trabajo (orden y limpieza)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9. Las zonas de circulación y las salidas se encuentran señalizadas</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 7, 8.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 3, 4.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 5, 6, 9.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: ACEPTABLE
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Movilización de cargas suspendidas/ Materiales estibados

RIESGO: ATRAPAMIENTOS

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La zona de trabajo se encuentra señalizada.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. El personal está adiestrado en la movilización correcta de cargas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Los trabajadores utilizan los EPP adecuados (casco, calzado, gafas, etc)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. El material a transportar está limpio y exento de sustancias resbaladizas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Se respetan las cargas máximas admisibles de cada aparato de izaje.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Se efectúa el mantenimiento periódico de los equipos de izaje conforme a indicaciones del fabricante.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. Los accesos complementarios de sujeción (eslingas) se someten a ensayos de tensión y cumplen con las normas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8. Se observan hábitos correctos de trabajo.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 2, 3, 8.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 5, 7.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 4, 6.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Movilización de cargas suspendidas/ Materiales estibados

RIESGO: CAIDAS DE OBJETOS POR DESPRENDIMIENTO.

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Se observan hábitos correctos de trabajo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. El área de trabajo se encuentra señalizada.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Los montacargas cuentan con guarda de protección.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Se respetan las capacidades máximas de montacargas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Se aseguran las cargas inestables antes de encender el montacargas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. Se respeta la velocidad máxima de circulación en montacargas de 5 Km/h.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8. Los accesorios de elevación están construidos por el fabricante.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9. Los operadores de montacargas reciben capacitación /entrenamiento inicial y anual.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 2, 9.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 4, 6.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 3, 7, 8.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Maniobras Operativas en Equipos Energizados y/o Máquinas con Partes Móviles o Rotantes

RIESGO: CONTACTOS ELECTRICOS

<table>
<thead>
<tr>
<th>CUESTIONARIO DE CHEQUEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de Riesgo</td>
</tr>
<tr>
<td>1.- Las herramientas están ajustadas al trabajo a realizar.</td>
</tr>
<tr>
<td>1.1.- Las herramientas tienen el nivel de aislamiento adecuado.</td>
</tr>
<tr>
<td>1.2.- Los equipos de pruebas y medición son idóneos para la tarea a realizar.</td>
</tr>
<tr>
<td>1.3.- Las herramientas de trabajo tienen la respectiva certificación</td>
</tr>
<tr>
<td>2.- Los equipos a operar tienen el respectivo etiquetado y señalización</td>
</tr>
<tr>
<td>2.1 Están indicados los parámetros eléctricos de operación.</td>
</tr>
<tr>
<td>2.2 Se encuentran marcados los límites de frontera de protección a la descarga de arco y el nivel de equipo de protección personal que se requiere.</td>
</tr>
<tr>
<td>3.- Se respetan las distancias mínimas de seguridad para trabajos en instalaciones con tensión sin protección.</td>
</tr>
<tr>
<td>4.- Existe el equipo de protección personal requerido para la tarea.</td>
</tr>
<tr>
<td>4.1.- El equipo está en buenas condiciones de funcionamiento.</td>
</tr>
<tr>
<td>4.2.- Se realiza el correcto mantenimiento y almacenamiento de los EPP.</td>
</tr>
<tr>
<td>5.- Se observan hábitos correctos de trabajo.</td>
</tr>
<tr>
<td>5.1 Los trabajadores aplican los respectivos procedimiento de bloqueo, aislamiento y rotulado.</td>
</tr>
<tr>
<td>5.2 Los trabajadores están adiestrados para trabajar con tensión.</td>
</tr>
<tr>
<td>5.3 Los trabajadores reciben un entrenamiento continuo.</td>
</tr>
<tr>
<td>6. La instalación dispone de puesta a tierra de las masas y protección diferencial.</td>
</tr>
</tbody>
</table>

Criterios de valoración:
- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 5.2, 5.3.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 1.1, 1.2, 2.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1.3, 2.1, 2.2, 3, 4, 4.1, 4.2, 6.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Maniobras Operativas en Equipos Energizados y/o Máquinas con Partes Móviles o Rotantes

RIESGO: APRISIONAMIENTOS/ ATRAPAMIENTOS

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las partes móviles de las máquinas son inaccesibles durante su funcionamiento.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Las partes con elementos móviles tienen dispositivos de seguridad que impiden su apertura en funcionamiento.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Las máquinas con elementos móviles disponen de espacio libre suficiente para evitar que invadan pasillos u otras zonas de trabajo. Además, se señala la necesidad de respetarlo.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Los trabajadores utilizan ropa de trabajo adecuada</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 4, 5.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 2.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Maniobras Operativas en Equipos Energizados y/o Máquinas con Partes Móviles o Rotantes

RIESGO: GOLPES , CORTES O CHOQUES CON OBJETOS

<table>
<thead>
<tr>
<th>CUESTIONARIO DE CHEQUEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de Riesgo</td>
</tr>
<tr>
<td>1. El operador de campo utiliza calzado de seguridad normalizado.</td>
</tr>
<tr>
<td>2. Se observan hábitos de trabajo seguro del operador de campo.</td>
</tr>
<tr>
<td>3. Los trabajos se hacen de manera segura, sin sobre esfuerzos o movimientos bruscos.</td>
</tr>
<tr>
<td>4. Existen procedimientos para la ejecución de maniobras operativas de equipos de manera segura.</td>
</tr>
<tr>
<td>5. El operador expuesto a cortes utiliza guantes normalizados.</td>
</tr>
</tbody>
</table>

Criterios de valoración:
- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1, 2, 5
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 4
- Se valora la situación como ACEPTABLE (-) en los demás casos:

RESULTADO: ACEPTABLE.
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Maniobras Operativas en Equipos Energizados y/o Máquinas con Partes Móviles o Rotantes

RIESGO: QUEMADURAS POR ARCO ELECTRICO.

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Las herramientas están ajustadas al trabajo a realizar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.- Las herramientas tienen el nivel de aislamiento adecuado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.2.- Los equipos de pruebas y medición son idóneos para la tarea a realizar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.- Las herramientas de trabajo tienen la respectiva certificación.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.- Los equipos a operar tienen el respectivo etiquetado y señalización.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Están indicados los parámetros eléctricos de operación.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2. Se encuentran marcados los límites de frontera de protección a la descarga de arco y el nivel de equipo de protección personal que se requiere.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.- Se respetan las distancias mínimas de seguridad para trabajos en instalaciones con tensión sin protección.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.- Existe el equipo de protección personal requerido para la tarea.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1. El equipo está en buenas condiciones de funcionamiento.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2. Se realiza el correcto mantenimiento y almacenamiento del EPP.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.3. La ropa de trabajo del Operador es ignífuga.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.- Se observan hábitos correctos de trabajo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1. Los trabajadores aplican los respectivos procedimiento de bloqueo, aislamiento y rotulado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2. Los trabajadores están adiestrados para trabajar con tensión.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3. Los trabajadores reciben un entrenamiento continuo.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 5.2, 5.3.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 1.1, 1.2, 2.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1.3, 2.1, 2.2, 3, 4, 4.1, 4.2, 4.3.
- Se valora la situación como ACEPTABLE (-) en los demás casos:

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán
ACTIVIDAD: Maniobras Operativas en Equipos Energizados y/o Máquinas con Partes Móviles o Rotantes
RIESGO: PROYECCION DE FLUIDOS A PRESION

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existe procedimientos para operación y purgado de equipos con fluidos a presión?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Se realiza mantenimiento preventivo periódico de las máquinas y equipos (verificación de mangueras, tubos flexibles y manguitos de empalme, etc)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Los equipos cuentan con resguardos fijos de protección.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Se realiza un control exhaustivo de posibles fugas y/o derrames de fluidos a presión.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se observan hábitos de trabajo correctos.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Se utiliza calzado de seguridad y EPP homologados.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 6.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 4.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Manipulación de químicos

RIESGO: AGENTES QUÍMICOS

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existen depósitos adecuados para el almacenamiento de productos químicos.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Se observan hábitos de trabajo adecuados, incluidas las medidas para la manipulación, el almacenamiento y el traslado en el lugar de trabajo, en condiciones seguras, de los agentes químicos peligrosos y de los residuos que contengan tales agentes.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Los edificios donde el Operador manipula químicos disponen de ventilación por dilución y extracción localizada de aire.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Se observan hábitos de orden y limpieza.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Existen procedimientos de trabajo para la manipulación de químicos.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. El Operador utiliza los elementos de protección individuales adecuados (mascarillas auto filtrantes de para polvo y de carbón activo, protección de traje entero, equipos con aporte de aire), según las prescripciones de uso y la ficha de datos de seguridad de los productos químicos.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. Se cuenta con las fichas de seguridad de datos técnicos de los productos químicos MSDS (Identificación del preparado y del responsable de su comercialización, Composición/información sobre los componentes, Identificación de los peligros, Primeros auxilios, Medidas de lucha contra incendios, Medidas que deben tomarse en caso de vertido accidental, Manipulación y almacenamiento, Controles de exposición/protección individual, Propiedades físicas y químicas, Estabilidad y reactividad, Informaciones toxicológicas, Informaciones ecológicas, Consideraciones sobre la eliminación, Informaciones relativas al transporte)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8. Existe prohibición de fumar y duchas lava ojos en sectores de riesgo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9. El Operador está capacitado en la manipulación de químicos.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10. Los productos químicos se encuentran correctamente identificados y etiquetados.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 2, 4, 9.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 6.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 3, 5, 7, 8, 10.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Maniobras Operativas en Equipos y/o Instalaciones con Superficies Calientes.

RIESGO: CONTACTOS TERMICOS.

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existe un control de pérdidas de vapor y se cubren los drenajes de agua caliente y/o purgas de vapor.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Las partes calientes de máquinas y/o instalaciones industriales cuentan con la aislación correspondiente.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. El Operador de campo utiliza equipos de protección individual adecuados en caso de riesgo de contacto con superficies calientes.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Las zonas con riesgo de contacto térmico se encuentran señalizadas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Se dispone de una vía de circulación de 1,50 m alrededor de todo foco radiante de calor.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 6.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 2, 4, 5.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Maniobras Operativas en Equipos y/o Instalaciones con Superficies Calientes.

RIESGO: QUEMADURAS

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Se observan procedimientos de trabajo seguro en los trabajos en proximidad de superficies calientes.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Las superficies calientes se encuentran aisladas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Las áreas con superficies calientes se encuentran señalizadas.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Se utilizan equipos de protección individual en caso de manipular equipos o superficies calientes.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 4.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 2, 3.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Bloqueo y Rotulado de Equipos

RIESGO: CONTACTOS ELECTRICOS

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Las herramientas están ajustadas al trabajo a realizar.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.1.- Las herramientas tienen el nivel de aislamiento adecuado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.2.- Los equipos de pruebas y medición son idóneos para la tarea a realizar.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.3.- Las herramientas de trabajo tienen la respectiva certificación</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.- Los equipos a operar tienen el respectivo etiquetado y señalización</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.1 Están indicados los parámetros eléctricos de operación.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.2 Se encuentran marcados los límites de frontera de protección a la descarga de arco y el nivel de equipo de protección personal que se requiere.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.- Se respetan las distancias mínimas de seguridad para trabajos en instalaciones con tensión sin protección.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.- Existe el equipo de protección personal requerido para la tarea.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.1.- El equipo está en buenas condiciones de funcionamiento.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.2.- Se realiza el correcto mantenimiento y almacenamiento de los EPP.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.- Se observan hábitos correctos de trabajo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.1 Los trabajadores aplican los respectivos procedimiento de bloqueo, aislamiento y rotulado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.2 Los trabajadores están adiestrados para trabajar con tensión.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.3 Los trabajadores reciben un entrenamiento continuo.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 5.2, 5.3.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 1.1, 1.2, 2.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1.3, 2.1, 2.2, 3, 4, 4.1, 4.2.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2)
CUESTIÓNARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Las herramientas están ajustadas al trabajo a realizar.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.1.- Las herramientas tienen el nivel de aislamiento adecuado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.2.- Los equipos de pruebas y medición son idóneos para la tarea a realizar.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.3.- Las herramientas de trabajo tienen la respectiva certificación</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.- Los equipos a operar tienen el respectivo etiquetado y señalización</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.1 Están indicados los parámetros eléctricos de operación.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.2 Se encuentran marcados los límites de frontera de protección a la descarga de arco y el nivel de equipo de protección personal que se requiere.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.- Se respetan las distancias mínimas de seguridad para trabajos en instalaciones con tensión sin protección.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.- Existe el equipo de protección personal requerido para la tarea.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.1. El equipo está en buenas condiciones de funcionamiento.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.2. Se realiza el correcto mantenimiento y almacenamiento del EPP.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.3. La ropa de trabajo del Operador es ignífuga.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.- Se observan hábitos correctos de trabajo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.1 Los trabajadores aplican los respectivos procedimientos de bloqueo, aislamiento y rotulado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.2 Los trabajadores están adiestrados para trabajar con tensión.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.3 Los trabajadores reciben un entrenamiento continuo.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 5, 5.2, 5.3.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1, 1.1, 1.2, 2.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1.3, 2.1, 2.2, 3, 4, 4.1, 4.2, 4.3.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: MEJORABLE (2)
<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Se realiza un diseño ergonómico del puesto de trabajo para adaptar el mobiliario de oficina (escritorio, silla, computadora) a las características personales de cada Operador.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se observan hábitos correctos de trabajo.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Se observan medidas organizativas para fomentar la realización de pautas de trabajo seguro para evitar los sobreesfuerzos producidos por la adopción de posturas forzadas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Se fomentan pausas en el trabajo para realizar ejercicios de relajación.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Las computadoras y accesorios que se utilizan son adecuadas y se encuentran en perfecto estado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Se observa orden y limpieza en el área de trabajo.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Criterios de valoración:
- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 2.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 5.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 1, 3, 4, 6.
- Se valora la situación como ACEPTABLE (--) en los demás casos.

RESULTADO: MEJORABLE (2)
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Actividades de Oficina

RIESGO: RADIACIONES NO IONIZANTES

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Los monitores de PC disponen de los filtros correspondientes.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se mantiene distancia de seguridad entre la fuente y el receptor (Operador).</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Se dispone de un servicio de vigilancia de la Salud.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. El Operador recibe información e instrucciones.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 2.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 3, 4.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Actividades de Oficina

RIESGO: ILUMINACIÓN

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. La iluminación de la oficina es uniforme.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Se mantienen niveles y contrastes de luminancia adecuados a las exigencias visuales de la tarea.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3. Se evitan los deslumbramientos directos producidos por la luz solar o por fuentes de luz artificial de alta luminancia.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. El monitor de la PC cuenta con los filtros correspondientes.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Las fuentes de iluminación se encuentran orientadas y distribuidas convenientemente.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6. Se observan hábitos correctos de trabajo.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 1, 5, 6.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondido NO a una o más de las siguientes preguntas: 2, 3.
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 4.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: ACEPTABLE (2).
PUESTO: Operador Campo YPF Energía Eléctrica - Complejo de Generación Tucumán

ACTIVIDAD: Traslado al Trabajo

RIESGO: ACCIDENTES DE TRANSITO

CUESTIONARIO DE CHEQUEO

<table>
<thead>
<tr>
<th>Factor de Riesgo</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El vehículo tiene menos de 8 años.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Se efectúa el mantenimiento periódico que el fabricante estipula (cambio de aceite, pastillas y líquido de frenos, luces, etc.).</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. El vehículo tiene actualizada la VTV.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Existe la instrucción de descanso de los choferes cada 2 ó 3 horas en viajes largos, y se respeta.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Se realiza vigilancia de la salud de los choferes.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Criterios de valoración:

- Se valora la situación de riesgo como MUY DEFICIENTE (10) cuando la respuesta es NO a una o más de las siguientes preguntas: 2, 3.
- Se valora la situación de riesgo como DEFICIENTE (6) cuando no siendo muy deficiente, se haya respondida NO a una o más de las siguientes preguntas: 1
- Se valora la situación de riesgo como MEJORABLE (2) cuando no siendo muy deficiente ni deficiente se haya respondida NO a una o más de las siguientes preguntas: 4, 5.
- Se valora la situación como ACEPTABLE (--) en los demás casos:

RESULTADO: MEJORABLE (2).
ANEXO III: Método LEST – Tablas de valoración

METODO LEST - TABLA DE VALORACION

TABLA RECOPIadora DE LAS VALORACIONES

Según se analice un Puesto de trabajo, repetitivo o no repetitivo; se consideren las siguientes dimensiones y variables:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.-</td>
<td>Ambiente térmico</td>
</tr>
<tr>
<td>A)</td>
<td>Entorno Físico</td>
</tr>
<tr>
<td>2.-</td>
<td>Ruido</td>
</tr>
<tr>
<td>3.-</td>
<td>Iluminación</td>
</tr>
<tr>
<td>4.-</td>
<td>Vibraciones</td>
</tr>
<tr>
<td>B)</td>
<td>Carga Física</td>
</tr>
<tr>
<td>5.-</td>
<td>Carga estática</td>
</tr>
<tr>
<td>6.-</td>
<td>Carga dinámica</td>
</tr>
<tr>
<td>C)</td>
<td>Carga Mental</td>
</tr>
<tr>
<td>7.-</td>
<td>Apremio de tiempo</td>
</tr>
<tr>
<td>8.-</td>
<td>Complejidad - Rapidez</td>
</tr>
<tr>
<td>9.-</td>
<td>Atención</td>
</tr>
<tr>
<td>D)</td>
<td>Aspectos Psicociales</td>
</tr>
<tr>
<td>11.-</td>
<td>Iniciativa</td>
</tr>
<tr>
<td>12.-</td>
<td>Status Social</td>
</tr>
<tr>
<td>13.-</td>
<td>Comunicaciones</td>
</tr>
<tr>
<td>14.-</td>
<td>Relación con el mando</td>
</tr>
<tr>
<td>E)</td>
<td>Tiempos de trabajo</td>
</tr>
<tr>
<td>15.-</td>
<td>Tiempos de trabajo</td>
</tr>
<tr>
<td>Temperatura (1.2 al 1.5.1)</td>
<td>Esfuerzo Físico</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>< 5°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5°C a < 10°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>10°C a < 15°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>15°C a < 18°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>18°C a < 22°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>22°C a < 25°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>25°C a < 30°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>30°C a < 35°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>35°C a < 40°C</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
<tr>
<td>40°C y +</td>
<td>Ligero</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Pesado</td>
</tr>
</tbody>
</table>

¹ Si, en el curso de la jornada de trabajo, el productor está sometido a varias temperaturas sucesivas, durante los tiempos limitados, no se retendrá más que la valoración correspondiente a la situación más desfavorable.
METODO LEST - TABLAS DE VALORACION

NIVEL DE ESFUERZO FÍSICO SEGÚN LA DEPENDENCIA DEL TRABAJO

<table>
<thead>
<tr>
<th>Esfuerzo Físico</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligero</td>
<td>< 800</td>
<td>< 700</td>
<td>-1, 0, 1, 2</td>
</tr>
<tr>
<td>Medio</td>
<td>800 a < 1.350</td>
<td>700 a < 1.150</td>
<td>3, 4, 5</td>
</tr>
<tr>
<td>Pesado</td>
<td>≥ 1.350</td>
<td>≥ 1.150</td>
<td>6 y más</td>
</tr>
</tbody>
</table>

Consumo de trabajo en Kilocalorías / Jornada
METODO LEST - TABLAS DE VALORACION

TABLA "B2" VALORACION DEL AMBIENTE SONORO, SEGUN EL REPARTO ESPECTRAL DE LA INTENSIDAD SONORA

a) PARA LOS TRABAJOS DONDE EL NIVEL DE ATENCION ES SUAVE O MEDIO

<table>
<thead>
<tr>
<th>Frecuencia centradas en bandas de Octava en Hertz,</th>
<th>Intensidad sonora en Decibeli 1 por banda de octava (2. 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65 a 69</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td>1.000</td>
<td>2</td>
</tr>
<tr>
<td>2.000</td>
<td>2</td>
</tr>
<tr>
<td>4.000</td>
<td>3</td>
</tr>
<tr>
<td>8.000</td>
<td>2</td>
</tr>
</tbody>
</table>

b) PARA LOS TRABAJOS DONDE EL NIVEL DE ATENCION ES IMPORTANTE

<table>
<thead>
<tr>
<th>Frecuencia centradas en bandas de Octava en Hertz,</th>
<th>Intensidad sonora en Decibeli 1 por banda de octava (2. 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55 a 59</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>1.000</td>
<td>3</td>
</tr>
<tr>
<td>2.000</td>
<td>3</td>
</tr>
<tr>
<td>4.000</td>
<td>3</td>
</tr>
<tr>
<td>8.000</td>
<td>3</td>
</tr>
</tbody>
</table>

Si en el análisis espectral de un ruido, se obtienen distintas bandas de nivel sonoro, se debe considerar la valoración más elevada.
TABLA “D” VALORACION DE LAS VIBRACIONES, SEGÚN LA FRECUENCIA, LA AMPLITUD Y LA DURACION DE LA EXPOSICION

Origen y Frecuencia de las vibraciones (4.3 a 4.5)
Amplitud (4.2)
Duración diaria de exposición (en horas)
< 2h
2 a 4 a
< 6h
≥ 7h 30’

Maquina de transportes o de T. P. < 15 Hertz:

<table>
<thead>
<tr>
<th></th>
<th>Suave</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onda diaria</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vagueado</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevado</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilización de herramientas o de máquinas:

- 15 a 40 hertz.
 - Suave: 1
 - Media: 3
 - Elevado: 4

- 40 a 300 hertz.
 - Suave: 0
 - Media: 1
 - Elevado: 2

- > 300 hertz.
 - Suave: 0
 - Media: 1
 - Elevado: 3

Proximidad de máquinas o de aparatos vibrantes:

- Suave: 0
- Media: 1
- Elevado: 2
METODO LEST - TABLAS DE VALORACION

MODO DE UTILIZAR LA TABLA “E”

Hay 5 posturas fundamentales: sentado, de pie, arrodillado, acostado y en cuclillas; a las cuales se pueden sumar algunas posturas suplementarias, curvados o fuertemente curvados, brazos por encima de los hombros.

Para calcular el gasto de energía horaria, se suma al gasto correspondiente la postura fundamental, el gasto correspondiente a la postura suplementaria. Así pues, si el productor está en pie 60’ por horas y está además obligado a encorvarse durante 30’ y de trabajar con los brazos por encima de los hombros durante 5’ su desgaste energético de origen estático será:

\[
\begin{align*}
0,16 \times 60 &= 9,6 \\
0,21 \times 30 &= 6,3 \\
0,14 \times 5 &= 0,7 \\
\end{align*}
\]

\[= 16,6 \text{ Kcal/h.} \]

Para la valoración, se procederá de la forma siguiente:

Se adicionará las valoraciones correspondientes a las diversas posturas según la duración.

En el ejemplo precedente tendremos:

<table>
<thead>
<tr>
<th>Postura</th>
<th>Duración</th>
<th>Valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>En pie</td>
<td>25’</td>
<td>1</td>
</tr>
<tr>
<td>En pie curvado</td>
<td>30’</td>
<td>5</td>
</tr>
<tr>
<td>En pie con los brazos por encima de los hombros</td>
<td>5’</td>
<td>1</td>
</tr>
</tbody>
</table>

7
METODO LEST - TABLAS DE VALORACION

VALORACION DEL DESGASTE FISICO DEL TRABAJO

TABLA "F"

Desgaste de trabajo en Kcal./jornada

<table>
<thead>
<tr>
<th></th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>a > 300</td>
<td></td>
<td>a < 275</td>
<td></td>
</tr>
<tr>
<td>300 a > 450</td>
<td></td>
<td>275 a < 400</td>
<td>0</td>
</tr>
<tr>
<td>450 a > 600</td>
<td>400 a < 550</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>600 a > 800</td>
<td>550 a < 700</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>800 a > 1.000</td>
<td>700 a < 850</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.000 a > 1.200</td>
<td>850 a < 1.000</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.200 a > 1.350</td>
<td>1.000 a < 1.150</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.350 a > 1.500</td>
<td>1.150 a < 1.300</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.500 a > 1.650</td>
<td>1.300 a < 1.400</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.650 a > 1.800</td>
<td>1.400 a < 1.500</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.800 a > 1.950</td>
<td>1.500 a < 1.600</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>≥ 1.950</td>
<td>≥ 1.600</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

VALORACION DE “CARGA MENTAL”

1.1.- Exigencias de Tiempos

TABLA “G 1”

<table>
<thead>
<tr>
<th>Forma de Remuneración (6.4)</th>
<th>Tiempos de montaje en cadena</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ ½ Jorn.</td>
</tr>
<tr>
<td>Salario a la hora</td>
<td>0</td>
</tr>
<tr>
<td>Salario al rendimiento con prima colectiva</td>
<td>0</td>
</tr>
<tr>
<td>Salario al rendimiento con prima individual</td>
<td>1</td>
</tr>
</tbody>
</table>

1 El método de cálculo del desgaste energético de origen estático y de origen dinámico está expuesto en las páginas 108 y 118.-
1.2. - TRABAJOS REPETITIVOS Y NO REPETITIVOS

TABLA "G 2"

<table>
<thead>
<tr>
<th>Existencia de descanso</th>
<th>Cadena (6.1)</th>
<th>No Cadena (6.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retrasos a recuperar</td>
<td>Retrasos a recuperar</td>
</tr>
<tr>
<td></td>
<td>(6.2.1 y 6.2.1.1)</td>
<td>(6.2.1 y 6.2.1.1)</td>
</tr>
<tr>
<td>Sí</td>
<td>No</td>
<td>Durante los descansos</td>
</tr>
<tr>
<td>Más de una por ½ jornada</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Una por ½ jornada</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Sin descanso¹</td>
<td>6</td>
<td>--</td>
</tr>
</tbody>
</table>

1.3. - TRABAJOS NO REPETITIVOS

TABLA "H 1"

<table>
<thead>
<tr>
<th>Existencia de descanso</th>
<th>Posibilidad de ausentarse (7.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Haciéndose reemplazar Sin hacerse reemplazar Sin consecuencia sobre la producción Con riesgos de retraso</td>
</tr>
<tr>
<td>Más de una por ½ jornada</td>
<td>6</td>
</tr>
<tr>
<td>Una por ½ jornada</td>
<td>8</td>
</tr>
<tr>
<td>Sin descanso</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLA "H 2"

<table>
<thead>
<tr>
<th>Forma de remuneración (6.4)</th>
<th>Posibilidad de parar la cadena o la máquina (6.2.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Si</td>
</tr>
<tr>
<td>Salario a la hora</td>
<td>3</td>
</tr>
<tr>
<td>Salario al rendimiento con prima colectiva</td>
<td>6</td>
</tr>
<tr>
<td>Salario al rendimiento con prima individual</td>
<td>8</td>
</tr>
</tbody>
</table>

¹ Fuera del descanso del bocadillo.
² Durante el descanso del bocadillo.
METODO LEST - TABLAS DE VALORACION

TABLA “I 1”

<table>
<thead>
<tr>
<th>COMPLEJIDAD - RAPIDEZ</th>
<th>Duración medio de Cada operación es segundos (0.5.1.1 y 6.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duración de cada ciclo (0.5.1.1.)</td>
</tr>
<tr>
<td>< 8”</td>
<td>8”a < 30”</td>
</tr>
<tr>
<td>< 1”</td>
<td>10</td>
</tr>
<tr>
<td>1”a < 1”5</td>
<td>9</td>
</tr>
<tr>
<td>1”5a < 2”</td>
<td>7</td>
</tr>
<tr>
<td>2”a < 2”5</td>
<td>5</td>
</tr>
<tr>
<td>2”5a < 3”</td>
<td>4</td>
</tr>
<tr>
<td>3”a < 3”5</td>
<td>3</td>
</tr>
<tr>
<td>3”5a < 4”</td>
<td>2</td>
</tr>
<tr>
<td>4”a < 5”</td>
<td>0</td>
</tr>
<tr>
<td>5”a < 6”</td>
<td>0</td>
</tr>
<tr>
<td>6”a < 7”</td>
<td>0</td>
</tr>
<tr>
<td>7”a < 8”</td>
<td>0</td>
</tr>
<tr>
<td>8”a < 10”</td>
<td>-</td>
</tr>
<tr>
<td>10”a < 12”</td>
<td>-</td>
</tr>
<tr>
<td>12”a < 14”</td>
<td>-</td>
</tr>
<tr>
<td>14”a < 16”</td>
<td>-</td>
</tr>
<tr>
<td>16”a < 20”</td>
<td>-</td>
</tr>
<tr>
<td>≥20”</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLA “I 2”

<table>
<thead>
<tr>
<th>COMPLEJIDAD - RAPIDEZ</th>
<th>Número de cosas de cada ciclo (6.3.2.1.)</th>
<th>Duración de cada ciclo (0.5.1.1.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 8”</td>
<td>8”a < 30”</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 a 3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>4 a 6</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>10 a 14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15 a 19</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20 a 24</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>25 a 29</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>30 a 34</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>35 a 39</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>≥40</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

214
METODO LEST - TABLAS DE VALORACION

ATENCION

TRABAJOS REPETITIVOS Y NO REPETITIVOS

TABLA “J 1”

<table>
<thead>
<tr>
<th>Nivel de la atención de la atención (6.5.1)</th>
<th>Duración por hora de trabajo (6.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><10’ 10’ 15’a 20’a 30’a 40’a ≥50’</td>
</tr>
<tr>
<td>Suave</td>
<td>0 0 0 1 2 2 3</td>
</tr>
<tr>
<td>Medio</td>
<td>0 0 1 2 3 5 6</td>
</tr>
<tr>
<td>Elevado</td>
<td>0 2 4 6 7 9 10</td>
</tr>
<tr>
<td>Muy elevado</td>
<td>2 4 6 8 9 10 10</td>
</tr>
</tbody>
</table>

TABLA “J 2”

<table>
<thead>
<tr>
<th>Importancia de riesgos</th>
<th>Frecuencia de riesgos</th>
</tr>
</thead>
<tbody>
<tr>
<td>De accidentes (6.5.2.)</td>
<td>Raros</td>
</tr>
<tr>
<td>Accidentes ligeros</td>
<td>1</td>
</tr>
<tr>
<td>Accidentes más serios</td>
<td>3</td>
</tr>
<tr>
<td>Accidentes graves</td>
<td>8</td>
</tr>
</tbody>
</table>

TABLA “J 3”

<table>
<thead>
<tr>
<th>Características del material (6.5.3.)</th>
<th>Frecuencia de riesgos de deterioros (8.5.3.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raros Intermitentes Permanentes</td>
</tr>
<tr>
<td>Robusto y poco costoso</td>
<td>0 1 2</td>
</tr>
<tr>
<td>Robusto y costoso</td>
<td>0 2 5</td>
</tr>
<tr>
<td>Frágil y poco costoso</td>
<td>2 5 7</td>
</tr>
<tr>
<td>Frágil y costoso</td>
<td>4 8 10</td>
</tr>
</tbody>
</table>

1 Cuando en puesto de trabajo el nivel de atención no es el mismo en todo momento, son posibles varias valoraciones, cada una de ellas correspondientes a un cierto nivel de atención que debe ser mantenido durante una cierta duración. No se retendrá nada más que la valoración más alta.
| METODO LEST - TABLAS DE VALORACION |

TABLA “ J 4”

<table>
<thead>
<tr>
<th>Valor de las piezas o del producto (6.5.4.)</th>
<th>Rechazo de piezas (6.5.5.)</th>
<th>Posibilidad de corregir los errores (6.5.5.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frecuencia de riesgos (6.5.4.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raros</td>
<td>Intermitentes</td>
</tr>
<tr>
<td>Suave</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mediano</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Elevado</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

TABLA “ J 5”

<table>
<thead>
<tr>
<th>Posibilidad de hablar (7.9) y (7.9.1)</th>
<th>Posibilidad de quitar los ojos del trabajo (En minutos por horas de trabajo (6.6.2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 15’</td>
</tr>
<tr>
<td>En absoluto</td>
<td>2</td>
</tr>
<tr>
<td>Algunas palabras</td>
<td>0</td>
</tr>
<tr>
<td>Conversaciones largas</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Si los obstáculos a la conversación son: “Atención sostenida” o “Ritmo de trabajo” - si no se admitirá que el productor puede mantener conversaciones más largas.
METODO LEST - TABLAS DE VALORACION

TRABAJOS NO REPETITIVOS (Complemento de las Tablas precedentes)

TABLA " K 1"

<table>
<thead>
<tr>
<th>Número medio de signos por máquina y horas (0.6.1.)</th>
<th>Número de máquinas o aparatos (0.6.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,2,3</td>
</tr>
<tr>
<td>0 a 3</td>
<td>0</td>
</tr>
<tr>
<td>4 a 5</td>
<td>2</td>
</tr>
<tr>
<td>≥ 6</td>
<td>5</td>
</tr>
</tbody>
</table>

Cuando las intervenciones son fijas:

TABLA " K 2"

<table>
<thead>
<tr>
<th>Número intervenciones diferentes (0.6.2)</th>
<th>Duración de las intervenciones por hora (0.6.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 15'</td>
</tr>
<tr>
<td>1 a 2</td>
<td>5</td>
</tr>
<tr>
<td>3 a 5</td>
<td>0</td>
</tr>
<tr>
<td>6 a 8</td>
<td>0</td>
</tr>
<tr>
<td>9 a 10</td>
<td>0</td>
</tr>
<tr>
<td>> 10</td>
<td>2</td>
</tr>
</tbody>
</table>

Cuando las intervenciones son aleatorias (o fijas o aleatorias):

TABLA " K 3"

<table>
<thead>
<tr>
<th>Número intervenciones diferentes (0.6.2)</th>
<th>Duración de las intervenciones por hora (0.6.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 15'</td>
</tr>
<tr>
<td>1 a 2</td>
<td>8</td>
</tr>
<tr>
<td>3 a 5</td>
<td>6</td>
</tr>
<tr>
<td>6 a 8</td>
<td>5</td>
</tr>
<tr>
<td>9 a 10</td>
<td>5</td>
</tr>
<tr>
<td>> 10</td>
<td>5</td>
</tr>
<tr>
<td>Nivel de percepción de detalles (3.8.)</td>
<td>Medida de objetos en cm.</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Moderado</td>
<td></td>
</tr>
<tr>
<td>Bastante exacto</td>
<td></td>
</tr>
<tr>
<td>Muy exacto</td>
<td></td>
</tr>
<tr>
<td>Extremadamente exacto</td>
<td></td>
</tr>
</tbody>
</table>

1 Largo – ancho - grueso
TABLA "N"

<table>
<thead>
<tr>
<th>Status Social</th>
<th>Formación general Requerida para la tarea (7.6)</th>
<th>Duración de aprendizaje en el puesto de trabajo (7.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1h</td>
</tr>
<tr>
<td>Ninguna</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Saber leer, escribir, contar</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Formación técnica empresa.</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Formación técnica empresa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(meses)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Otros títulos F.P.</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

C O M U N I C A C I Ó N

<table>
<thead>
<tr>
<th>Posibilidad de hablar Durante el trabajo (7.9)</th>
<th>Posibilidad de desplazarse (7.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>En Absoluto</td>
<td>8</td>
</tr>
<tr>
<td>Algunas palabras</td>
<td>4</td>
</tr>
<tr>
<td>Conversaciones más largas</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLA "P 2"

<table>
<thead>
<tr>
<th>Posibilidad de desplazarse (7.2)</th>
<th>Número de personas en un radio de 6m (7.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
</tr>
</tbody>
</table>

219
ANEXO IV: Cuestionario observación Método Lest – Operador de Campo

A. ENTORNO FÍSICO

1. AMBIENTE TÉRMICO

Si durante la jornada el trabajador está sometido a diferentes ambientes térmicos, se calculará la puntuación de cada situación de forma independiente y se escogerá la más desfavorable.

Velocidad del aire en el puesto de trabajo (m/s)	5
Temperatura del aire (°C)	18,4 Seca
	23 Húmeda
Duración de la exposición diaria a estas condiciones	30’ a < 1 h 30’
	1 h 30’ a < 2 h 30’
	2 h 30’ a < 4
	4 h a < 5 h 30’
	X 5 h 30’ a < 7 h
	>= 7 h

Veces que el trabajador sufre variaciones de temperatura en la jornada

| 25 o menos | más de 25 |

Indique el número de veces que el trabajador sufre cambios de temperatura momentáneos debido a desplazamientos a otras zonas o por variaciones de las condiciones ambientales.

2. RUIDO

El nivel sonoro a lo largo de la jornada es

| Constante 3 | Variable 4 |

Indique si el trabajador está sometido siempre a un mismo nivel sonoro, o si varía a lo largo de la jornada.

El nivel de atención requerido por la tarea es

| Débil |
| Medio |
| X Elevado |
| Muy elevado |

El NIVEL DE ATENCIÓN depende de la precisión de la tarea, de la necesidad de captar ciertas informaciones de carácter visual, táctil o sonoro y de los requerimientos propios de las tareas de vigilancia. Un mayor número de informaciones a percibir, una mayor necesidad de precisión en la tarea (piezas pequeñas o exactitud en la manipulación) o la dificultad en percibir posibles defectos supondrán un mayor requerimiento de atención. En un mismo puesto de trabajo el nivel de atención puede variar; en ese caso se escogerá el más elevado. Este dato se solicita también en la variable “Atención” de la dimensión “CARGA MENTAL”, el valor introducido debe ser el mismo en ambos casos.
Número de ruidos impulsivos a los que está sometido el trabajador

- menos de 15 al día
- 15 o más al día

Ruidos IMPULSIVOS son aquellos de duración inferior a 1 segundo y de intensidad sonora mayor o igual a 85 dB(A) (martilleos, explosiones...)

(3) Si el nivel sonoro a lo largo de la jornada es constante
(4) Si el nivel sonoro a lo largo de la jornada es variable

<table>
<thead>
<tr>
<th>Nivel de intensidad sonora en decibelios</th>
<th>Niveles de intensidad sonora diferentes en decibelios y duración de la exposición a cada nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td><60</td>
<td>Intensidad (dB)</td>
</tr>
<tr>
<td>60 a 69</td>
<td>92,6</td>
</tr>
<tr>
<td>70 a 74</td>
<td>69,3</td>
</tr>
<tr>
<td>75 a 79</td>
<td>92,0</td>
</tr>
<tr>
<td>80 a 82</td>
<td>77,0</td>
</tr>
<tr>
<td>83 a 84</td>
<td>86,5</td>
</tr>
<tr>
<td>85 a 86</td>
<td>63,4</td>
</tr>
<tr>
<td>87 a 89</td>
<td>80,1</td>
</tr>
<tr>
<td>90 a 94</td>
<td>87,5</td>
</tr>
<tr>
<td>95 a 99</td>
<td>65,8</td>
</tr>
<tr>
<td>100 a 104</td>
<td>84,7</td>
</tr>
<tr>
<td>>105</td>
<td>76,1</td>
</tr>
</tbody>
</table>

3. AMBIENTE LUMINOSO

El nivel de iluminación en el puesto de trabajo en lux es de:

- <30
- 30 a <50
- 50 a <80
- 80 a <200
- 200 a <350
- 350 a <600
- 600 a <900
- 900 a <1500
- 1500 a <3000
- >=3000
El nivel (medio) de iluminación general del taller en lux es de:

| 200 |

El nivel de contraste en el puesto de trabajo es:

- Elevado
- Medio
- Débil

El contraste es la diferencia entre la luminancia de los objetos a observar y el fondo.
Contraste ELEVADO es, por ejemplo, el de los caracteres de imprenta negros sobre fondo blanco.
Contraste DÉBIL es, por ejemplo, el de los hilos y la tela en las labores de zurcido.
Contraste MEDIO corresponde a una situación intermedia entre las dos anteriores.

El nivel de percepción requerido en la tarea:

- General
- Basta
- Basto
- Moderado
- Bastante fino
- Muy fino
- Extremadamente fino

Se dan a continuación ejemplos de trabajos en función de la percepción requerida:

- GENERAL: Circulación por pasillos, lugares de paso, manipulación de productos a granel, manejo de carbones y cenizas...
- BASTA: Montaje de grandes máquinas, contabilización de grandes piezas...
- MODERADO: Trabajos de oficina (lectura, escritura...), montaje de piezas medianas...
- BASTANTE FINA: Montaje y verificación de piezas pequeñas, pintado extrafino...
- MUY FINA: Montaje de piezas de precisión, fabricación de matrices, trabajos de verificación, lectura de instrumentos...
- EXTREMADAMENTE FINA: relojería de precisión...

Se trabaja con luz artificial:

- Permanentemente
- No permanentemente

Existen deslumbramientos:

- Sí
- No

4. **VIBRACIONES**

Duración diaria de exposición a las Vibraciones:

- < 2 h
- 2 a < 4 h
- 4 a < 6 h
- 6 a < 7 h 30’
- >= 7 h 30’

En caso de no existir exposición a vibraciones introduzca los valores menores (Duración <2h; Carácter: Poco molestas)
El carácter de las vibraciones es

<table>
<thead>
<tr>
<th></th>
<th>Poco molestas</th>
<th>Molestas</th>
<th>Muy molestas</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. CARGA FISICA

6. CARGA ESTÁTICA

Indicar las posturas más frecuentemente adoptadas por el trabajador así como su duración en minutos por cada hora de trabajo

<table>
<thead>
<tr>
<th>Postura</th>
<th>Duración total (minutos/hora)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentado:</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>2h</td>
</tr>
<tr>
<td>Inclinado</td>
<td></td>
</tr>
<tr>
<td>Con los brazos por encima de los hombros</td>
<td></td>
</tr>
<tr>
<td>De pie:</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8h</td>
</tr>
<tr>
<td>Con los brazos en extensión frontal</td>
<td>30’</td>
</tr>
<tr>
<td>Con los brazos por encima de los hombros</td>
<td>15’</td>
</tr>
<tr>
<td>Con inclinación</td>
<td>30’</td>
</tr>
<tr>
<td>Muy inclinado</td>
<td></td>
</tr>
<tr>
<td>Arrrodillado</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Inclinado</td>
<td></td>
</tr>
<tr>
<td>Con los brazos por encima de los hombros</td>
<td></td>
</tr>
<tr>
<td>Tumbado</td>
<td></td>
</tr>
<tr>
<td>Con los brazos por encima de los hombros</td>
<td></td>
</tr>
<tr>
<td>Agachado</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>30’</td>
</tr>
<tr>
<td>Con los brazos por encima de los hombros</td>
<td>15’</td>
</tr>
</tbody>
</table>
CARGA DÍNAMICA

Esfuerzo realizado en el puesto

Se consideran esfuerzos la elevación de cargas, el mantenimiento de pesos, los derivados del uso y manipulación de herramientas,...

El esfuerzo realizado en el puesto de trabajo es:

- Continuo
- Breve pero repetido

<table>
<thead>
<tr>
<th>(1) Si el esfuerzo es continuo</th>
<th>(2) Si los esfuerzos son breves pero repetidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración total del esfuerzo en minutos por hora</td>
<td>Veces por hora que se realiza el esfuerzo</td>
</tr>
<tr>
<td><5'</td>
<td><30</td>
</tr>
<tr>
<td>5' a <10'</td>
<td>30 a 59</td>
</tr>
<tr>
<td>10' a <20'</td>
<td>60 a 119</td>
</tr>
<tr>
<td>20' a <35'</td>
<td>120 a 209</td>
</tr>
<tr>
<td>35' a <50'</td>
<td>210 a 299</td>
</tr>
<tr>
<td>>=50'</td>
<td>>=300</td>
</tr>
</tbody>
</table>

Peso en Kg. de la carga que provoca el esfuerzo

- <1
- X 1 a <2
- 2 a <5
- 5 a <8
- 8 a <12
- 12 a <20
- >=20

Esfuerzo de aprovisionamiento: N/A

Es esfuerzo realizado por el trabajador para, por ejemplo, alimentar la máquina con materiales.
C. CARGA MENTAL

El trabajo es

☐ Repetitivo
☒ No repetitivo

Indique si el trabajo puede considerarse repetitivo o no repetitivo (de supervisión o vigilancia)

7. APREMIO DE TIEMPOS

Modo de remuneración del trabajador

☒ Salario fijo
☐ Salario a rendimiento con prima colectiva
☐ Salario a rendimiento con prima individual

El trabajador puede realizar pausas (sin contar las reglamentarias)

☒ Más de una en media jornada
☐ Una en media jornada
☐ Sin pausas

El trabajo es en cadena

☐ Sí en cadena
☒ No en cadena

-TRABAJO EN CADENA: El trabajador dispone de un tiempo determinado para realizar la tarea causando perturbaciones los retrasos. Las piezas se le presentan al trabajador de forma cronometrada.
-TRABAJO NO EN CADENA: El trabajador no depende del ritmo de la cadena. El tiempo de proceso no está estrictamente fijado.
Si se producen retrasos en la tarea estos deben recuperarse

<table>
<thead>
<tr>
<th>No</th>
<th>Durante las pausas</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Durante el trabajo</td>
</tr>
</tbody>
</table>

Indíque si el trabajador está obligado a recuperar los retrasos en la tarea; si es así indique si puede recuperarlos durante el curso de su trabajo o debe emplear para ello las pausas.

<table>
<thead>
<tr>
<th>(5) Si el trabajo es repetitivo</th>
<th>(6) Si el trabajo es no repetitivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo en alcanzar el ritmo normal de trabajo</td>
<td></td>
</tr>
<tr>
<td>=1/2 hora</td>
<td>Sí</td>
</tr>
<tr>
<td>>1/2 hora <=1 día</td>
<td>X</td>
</tr>
<tr>
<td>2 días a <=1 sem.</td>
<td>No, debe actuar de forma rápida sin detener la máquina</td>
</tr>
<tr>
<td><1 sem a <=1 mes</td>
<td>El trabajador tiene posibilidad de ausentarse momentáneamente de su puesto de trabajo fuera de las pausas previstas</td>
</tr>
<tr>
<td>> 1 mes</td>
<td>Nunca</td>
</tr>
<tr>
<td>Nunca</td>
<td>Si</td>
</tr>
<tr>
<td>7</td>
<td>No</td>
</tr>
</tbody>
</table>

Este dato se solicita también en la variable "Comunicación con los demás trabajadores" de la dimensión "ASPECTOS PSICOSOCIALES"; valor indicado debe ser el mismo en ambos casos.

A continuación debe indicar si en caso de ausentarse momentáneamente de su puesto debe hacerse sustituir por otro trabajador. En caso de no ser necesario indicar si esto puede provocar o no atrasos en la producción.

| (7) Si el trabajador tiene posibilidad de ausentarse |
| Tiene necesidad de hacerse reemplazar por otro trabajador |
| X | Sí |
| 6 | No |

(8) Si no tiene necesidad de hacerse reemplazar

Su ausencia provocaría...

| Sin consecuencias en la producción |
| Riesgo de retrasos |
8. ATENCIÓN

El nivel de atención requerido por la tarea es

- Débil
- Medio
- Elevado
- Muy elevado

El NIVEL DE ATENCIÓN depende de la precisión de la tarea, de la necesidad de captar ciertas informaciones de carácter visual, táctil o sonoro y de los requerimientos propios de las tareas de vigilancia. Un mayor número de informaciones a percibir, una mayor necesidad de precisión en la tarea (piezas pequeñas o exactitud en la manipulación) o la dificultad en percibir posibles defectos supondrán un mayor requerimiento de atención. En un mismo puesto de trabajo el nivel de atención puede variar; en ese caso se escogerá el más elevado.

Este dato se ha solicitado también en la variable "Ruido" de la dimensión "ENTORNO FÍSICO", el valor introducido debe ser el mismo en ambos casos.

El nivel de atención reseñado debe ser mantenido (en minutos por cada hora)

- <10 min
- 10 a <20 min
- 20 a <40 min
- >=40 min

La importancia de los riesgos que puede acarrear la falta de atención es

- Accidentes ligeros (provocan una parada de 24 horas o menos)
- Accidentes serios (provocan incapacidad temporal del trabajador)
- Accidentes graves (provocan incapacidad permanente o muerte)

La frecuencia con que el trabajador sufre estos riesgos es

- Rara (menos de una vez a la jornada)
- Intermitente (en ciertas actividades del trabajador)
- Permanente

La posibilidad técnica de hablar en el puesto es

- Ninguna
- Intercambio de palabras
- Amplias posibilidades

Indíque si existe posibilidad técnica de hablar en el puesto. Las posibilidades son:
- NINGUNA: El aislamiento, el ruido o la necesidad de atención impiden totalmente hablar.
- INTERCAMBIO DE PALABRAS: Existe la posibilidad de hablar, pero no mantener conversaciones seguidas.
- AMPLIAS POSIBILIDADES: No existen impedimentos técnicos para hablar.

Este dato se solicita también en la variable "Comunicación con los demás trabajadores" de la dimensión "ASPECTOS PSICOSOCIALES", ambos valores deben coincidir.

El tiempo que puede el trabajador apartar la vista del trabajo por cada hora dado el nivel de atención requerido es

- >=15 min.
- 10 a <15 min.
- 5 a <10 min.
- <5 min.
Las siguientes cuatro cuestiones deben responderse sólo si el trabajo es no repetitivo

(6) Si el trabajo es no repetitivo

El número de máquinas a las que debe atender el trabajador es

- 1, 2 ó 3
- 4, 5 ó 6
- 7, 8 ó 9
- 10, 11 ó 12
- X más de 12

El número medio de señales por máquina y hora es

- 0 a 3
- 4 a 5
- X 6 o más

Indique el número medio de señales que producen las máquinas o aparatos por cada hora. Se entiende por señal toda información proveniente de la máquina que deba ser atendida por el trabajador y requiera de éste una intervención. Puede ser visual, sonora o táctil (medidores, avisadores...)

Intervenciones diferentes que el trabajador debe realizar

- de 1 a 2
- de 3 a 5
- de 6 a 8
- de 9 a 10
- X 10 o más

Duración total del conjunto de las intervenciones por cada hora de trabajo

- < 15'
- de 15' a < de 30'
- X de 30' a < de 45'
- de 45' a < de 55'
- >= 55'

9. COMPLEJIDAD: N/A

Las cuestiones de la variable COMPLEJIDAD deben responderse sólo si el trabajo es repetitivo

(5) Si el trabajo es repetitivo

Duración media de cada operación

- < 2''
- de 2'' a < de 4''
- de 4'' a < de 8''
- de 8'' a < de 16''
- X >= 16''
Duración media de cada ciclo

- <8''
- de 8'' a < de 30''
- de 30'' a < de 60''
- de 1' a < de 3'
- de 3' a < de 5'
- de 5' a < de 7'
- >= 7''

D. ASPECTOS PSICOSOCIALES

11. INICIATIVA

El trabajador puede modificar el orden de las operaciones que realiza

- Sí
- X No

Indique si el trabajador puede organizar su trabajo alterando el orden en que realiza las operaciones.

El trabajador puede controlar el ritmo de las operaciones que realiza

- X Ritmo enteramente dependiente de la cadena o de la máquina
- Posibilidad de adelantarse

(9) Si el trabajador puede controlar el ritmo de las operaciones que realiza

Puede adelantarse

- < 2 min/hora
- 2 a < 4 min/hora
- 4 a < 7 min/hora
- 7 a <10 min/hora
- 10 a <15 min/hora
- >= 15 min/hora

Si el trabajador puede organizar su trabajo alterando el orden en que realiza las operaciones, indique cuanto puede adelantarse de media por cada hora de trabajo, aprovechando ese tiempo para descansar sin perturbar la producción.

El trabajador controla las piezas que realiza: N/A

- Sí
- No

El trabajador realiza retoques eventuales: N/A

- Sí
- No

Indique si el trabajador puede corregir él mismo errores o imperfecciones.

Definición de la norma de calidad del producto fabricado: N/A

- Muy estricta, definida por servicio especializado
- Con márgenes de tolerancia explícitos
Influencia positiva del trabajador en la calidad del producto

Indique si la actitud o habilidad del trabajador influye positivamente en la calidad del producto:

- **NINGUNA INFLUENCIA:** el obrero no puede influir positivamente en la calidad del producto.
- **DÉBIL INFLUENCIA:** el sistema técnico controla la calidad, sólo puede reglar mejor las máquinas.
- **SENSIBLE INFLUENCIA:** la habilidad del operario o la experiencia profesional influyen en la calidad del producto.
- **TOTAL INFLUENCIA**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Ninguna</td>
<td>Débil, el sistema técnico controla la calidad, sólo puede reglar mejor las máquinas</td>
<td>Sensible: importa la habilidad y experiencia del trabajador</td>
<td>Total</td>
</tr>
</tbody>
</table>

Posibilidad de cometer errores

Indique si:

- El puesto no permite cometer errores
- Se pueden producir errores pero sin repercusión
- Se pueden producir errores con repercusión media
- Errores posibles con repercusión posterior importante (eventualmente productos irre recuperables)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total imposibilidad</td>
<td>Posibles, pero sin repercusión anterior o posterior</td>
<td>Posibles con repercusión media</td>
<td>Posibles con repercusión importante (producto irre recuperable)</td>
</tr>
</tbody>
</table>

En caso de producirse un incidente debe intervenir

Se consideran incidentes, por ejemplo, las paradas o malfuncionamiento de máquinas en una cadena, los fallos de aprovisionamiento, la presencia de piezas que necesiten rectificaciones...

Las calificaciones de MENORES y MÁS IMPORTANTES hacen referencia al tiempo y a la complejidad de la intervención necesaria para superar el incidente.

Las posibilidades son:
- Interviene el propio trabajador en caso de incidente menor.
- Interviene otro trabajador en caso de incidente menor.
- Interviene el propio trabajador en cualquier caso.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>En caso de incidente menor: el propio trabajador</td>
<td>En caso de incidente menor: otra persona</td>
<td>Tanto en caso de incidente importante como menor: el trabajador</td>
</tr>
</tbody>
</table>

La regulación de la máquina la realiza

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El trabajador</td>
<td>Otra persona</td>
</tr>
</tbody>
</table>

12. COMUNICACIÓN CON LOS DEMÁS TRABAJADORES
El número de personas visibles por el trabajador en un radio de 6 metros es: 1

El trabajador puede ausentarse de su trabajo

Indique si el trabajador puede ausentarse momentáneamente de su puesto de trabajo fuera de las pausas previstas. Este dato se ha solicitado también en la variable "Presión de tiempos" de la dimensión "CARGA MENTAL", los valores indicados deben coincidir.

- Sí
- No

La normativa estipula sobre el derecho a hablar ...

Indique la normativa relativa al derecho a hablar:
- PROHIBICIÓN PRÁCTICA DE HABLAR: Hablar durante el trabajo está prohibido reglamentariamente o el mando no lo permite
- TOLERANCIA DE ALGUNAS PALABRAS: Se tolera algún intercambio verbal breve
- NINGUNA RESTRICCIÓN: No existe reglamento o restricción normativa para el uso de la palabra

- Prohibición práctica de hablar
- Tolerancia de algunas palabras
- Ninguna restricción

Posibilidad técnica de hablar en el puesto

Indique si existe posibilidad técnica de hablar en el puesto. Este dato se ha solicitado también en la variable "Atención" de la dimensión "CARGA MENTAL", el valor introducido aquí debe coincidir con el indicado en la dimensión "CARGA MENTAL". Las posibilidades son:
- NINGUNA: El aislamiento, el ruido o la necesidad de atención impiden totalmente hablar.
- AMPLIAS POSIBILIDADES: No existen impedimentos técnicos para hablar.

- Ninguna
- Intercambio de palabras
- Amplias posibilidades

Necesidad de intercambio verbal

Indique si por la naturaleza de la tarea se requieren intercambios verbales con otros puestos:
- NINGUNA NECESIDAD: La tarea no requiere intercambios verbales con otros puestos.
- INTERCAMBIOS POCO FRECUENTES: Se requieren frecuentes intercambios verbales esporádicamente.

- Ninguna necesidad de intercambios verbales
- Necesidad de intercambios verbales poco frecuentes
- Necesidad de intercambios verbales frecuentes

Existencia de expresión obrera organizada

- No hay delegado sindical en el sector al que pertenece el trabajador
- Un delegado poco activo o representativo
- Varios delegados medianamente activos
- Varios delegados muy activos
13. **RELACIÓN CON EL MANDO**

Frecuencia de las consignas recibidas del mando en la jornada

Indique la frecuencia de las órdenes de los mandos al trabajador a lo largo de la jornada:

- **MUCHAS Y VARIABLES CONSIGNAS DEL MANDO**: Se dan relaciones frecuentes con el mando; muchas consignas y órdenes diferentes a lo largo de la jornada.
- **CONSIGNAS AL COMIENZO Y A PETICIÓN DEL TRABAJADOR**: Se dan consignas al comienzo de la jornada y cuando el trabajador lo solicita.
- **NO HAY CONSIGNAS**.

- **X** Muchas y variables consignas del mando. Relación frecuente con el mando
- Consignas al comienzo de la jornada y a petición del trabajador
- No hay consignas de trabajo

Amplitud de encuadramiento en primera línea (número de trabajadores dependientes de cada responsable en el primer nivel de mando)

- <10
- **X** Entre 11 y 20
- Entre 21 y 40
- >40

Intensidad del control jerárquico: alejamiento temporal y/o físico del mando

Indique el alejamiento físico/temporal del mando:

- **GRAN PROXIMIDAD**: El mando se encuentra cerca y su presencia es muy frecuente.
- **ALEJAMIENTO MEDIANO O GRANDE**: El mando no se encuentra cerca o presente frecuentemente.
- **AUSENCIA DEL MANDO DURANTE MUCHO TIEMPO**: Durante la mayor parte del tiempo de trabajo el mando está ausente.

- **X** Gran proximidad
- Alejamiento mediano o grande
- Ausencia del mando durante mucho tiempo

Dependencia de puestos de categoría superior no jerárquica

Indique si el trabajador depende de puestos de categoría superior no jerárquica como controladores, ajustadores, mantenimiento...

- **X** Dependencia de varios puestos
- Dependencia de un solo puesto
- Puesto independiente

14. **STATUS SOCIAL**

Duración del aprendizaje del trabajador para el puesto

Indique cuánto tiempo de aprendizaje requiere el trabajador para ocupar el puesto que ocupa. Se trata del tiempo formación específica para el puesto en concreto, sin considerar la formación general anterior que el trabajador pueda tener.
Formación general del trabajador requerida

- Ninguna
- Saber leer y escribir
- Formación en la empresa (menos de 3 meses)
- Formación en la empresa (más de 3 meses)
- Formación Profesional o Bachillerato

15. TIEMPOS DE TRABAJO

Cantidad y organización del Tiempo

Duración semanal en horas del tiempo de trabajo

- 35 a <41
- 41 a <44
- 44 a <46
- >=46

Tipo de horario del trabajador

- Normal
- 2 X 8 (dos turnos de 8 horas)
- 4 X 12(cuatro turnos de 12 horas)
- Non-stop

Con relación a las horas extraordinarias el trabajador tiene…(En caso de no existir seleccione la opción "Posibilidad total de rechazo").

- Imposibilidad de rechazo
- Posibilidad parcial de rechazo
- Posibilidad total de rechazo

Los retrasos horarios son

- Imposibles Poco tolerados
- Tolerados
Con relación a las pausas

- Imposible fijar duración y tiempo de las pausas
- Posible fijar el momento
- Posible fijar momento y duración

Con relación a la hora de finalizar la jornada

<table>
<thead>
<tr>
<th>Indique, en relación con el final del trabajo, si el trabajador tiene la...</th>
</tr>
</thead>
<tbody>
<tr>
<td>- POSIBILIDAD DE CESAR EL TRABAJO SÓLO A LA HORA PREVISTA o sólo unos minutos antes.</td>
</tr>
<tr>
<td>- POSIBILIDAD DE ACABAR ANTES PERO OBLIGADO A PERMANECER EN EL PUESTO</td>
</tr>
<tr>
<td>- POSIBILIDAD DE ACABAR ANTES Y ABANDONAR EL LUGAR DE TRABAJO.</td>
</tr>
</tbody>
</table>

- Posibilidad de cesar el trabajo sólo a la hora prevista
- Posibilidad de acabar antes el trabajo pero obligado permanecer en el puesto
- Posibilidad de acabar antes y abandonar el lugar de trabajo

Con relación al tiempo de descanso

- Imposible tomar descanso en caso de incidente en otro puesto
- Tiempo de descanso de media hora o menor
- Tiempo de descanso de más de media hora
ANEXO V: Planilla de asistencia Capacitaciones

PLANILLA DE ASISTENCIA

<table>
<thead>
<tr>
<th>Curso</th>
<th>Módulo Básico de Seguridad- Programa YPF y los Trabajadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha inicio y fin</td>
<td>Horas</td>
</tr>
<tr>
<td>Lugar</td>
<td></td>
</tr>
<tr>
<td>Institución/ Instructor</td>
<td></td>
</tr>
</tbody>
</table>

- Se entrega material escrito: SI NO
- Calidad: Planificado No planificado
- Ofimática: In company (1) Interno (2) X
- Habilidades y Actitudes: Presencial en aula X E-learning
- Salud y Seguridad: Idiomas Técnicos
- Medio Ambiente: Entrenamiento en el trabajo*
- Sistema Gestión: *más de 40 hs, registrar total de horas y firmar

<table>
<thead>
<tr>
<th>Nro</th>
<th>N° legajo</th>
<th>Apellidos y Nombres</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: es importante completar la asistencia para que el curso pueda ser registrado en la ficha del empleado y contribuya a los indicadores de tu negocio.

Recordar que la actividad se da por realizada habiendo cumplido el 75% de asistencia al mismo.
ANEXO VI: Norma de Seguridad – Utilización equipos y elementos de izajes.

1 OBJETIVO

1.1 Contar con un documento donde conste la descripción, las condiciones para la ejecución, los riesgos que la tarea puede implicar y, por ende, las precauciones que deban adoptarse y los controles a realizar para trabajos que requieren la utilización de Equipos de Izajes.

1.2 Servirá para poner en conocimiento de las tareas a ejecutar a la Supervisión Autorizante de la zona/área/planta donde se realizarán los trabajos y de los Contratistas afectados/relacionados a los mismos.

2 ALCANCE

Todas las instalaciones de YPF Energía Eléctrica S.A.

3 ABREVIATURAS Y DEFINICIONES

CMASS: Calidad, Medio Ambiente, Seguridad, y Salud Ocupacional.

Complejo de Generación Tucumán: UO de generación eléctrica que comprende a las Centrales Térmicas Tucumán y San Miguel de Tucumán ubicadas en la localidad de El Bracho – provincia de Tucumán, pertenecientes a YPF Energía Eléctrica S.A.

Permiso de Trabajo Con Fuego / Sin Fuego: El Permiso cubre y certifica que el personal “dueño “del sistema o equipo (Supervisor Autorizante) y el que ejecuta los trabajos (Supervisor Solicitante) se han puesto de acuerdo sobre el momento en que se ejecutan la tareas, que se han tomado todas las precauciones de seguridad relativas a la naturaleza del trabajo, y que están disponibles todos los elementos de seguridad personal.
Supervisor Solicitante: Persona autorizada por la Gerencia de la zona/área/planta y suficientemente capacitada para supervisar y/o ejecutar los trabajos específicos. El Supervisor Solicitante puede delegar la realización de las tareas en personal perteneciente a empresas contratistas calificadas, que estarán representadas por un Supervisor Ejecutante. El Supervisor Ejecutante es responsable del cumplimiento de las medidas de seguridad expresamente adoptadas para la realización de las tareas que requieren la utilización de equipos de izajes.

Supervisor Autorizante: Supervisor designado por la Gerencia de la zona/área/planta; es el encargado de las instalaciones donde se realizarán los trabajos programados.

4 **DESCRIPCIÓN**

4.1 **Requisitos Generales**

Antes de emitir el Permiso de Utilización de Equipos de Izajes deben considerarse entre otros, los siguientes factores:

a) La capacidad del equipo en función de la carga, sin obviar los ángulos y distancias de la maniobra.

b) La capacidad de los accesorios a utilizar, como por ejemplo eslingas, fajas, grilletes, aparejos, etc.

c) El personal requerido en la maniobra, entre otros, responsable de las señas al operador, enganchadores, operarios para guía y sujeción de la carga.

d) Desconectar cualquier equipo eléctrico fijo u otra fuente de potencia eléctrica.
e) Las instalaciones adyacentes al lugar de la maniobra, tales como líneas eléctricas aéreas, equipos presurizados o en servicio, resistencia adecuada del suelo dónde se apoyará la grúa.

4.2 Metodología de Gestión

a) El Supervisor Solicitante deberá confeccionar el correspondiente Permiso de Trabajo Con Fuego / Sin Fuego según corresponda por la naturaleza de las tareas y el Permiso de Utilización de Equipos de Izajes. El Supervisor Solicitante debe detallar claramente el equipo a intervenir y la zona donde se llevarán a cabo las tareas. Deberá contactarse con el jefe del área en cuestión (Supervisor Autorizante) quien autorizará el Permiso. En caso de que el trabajo lo realizara una empresa contratista, siempre bajo su supervisión, se deberá detallar en el permiso la razón social y la firma del responsable de la misma.

b) El Supervisor Autorizante firmará al Supervisor Solicitante o a quien éste designe, los correspondientes Permisos Principal y Complementarios, verificando las medidas de seguridad adoptadas; pudiendo suspender los trabajos por falta de cumplimiento en las mismas u otras maniobras operativas.

c) Casos Especiales

- En caso que el Supervisor Solicitante no se encuentre en la planta (razones de fuerza mayor) en el momento de finalización del trabajo, el pedido de entrega del equipo o instalación para su puesta en operaciones sólo podrá ser solicitada por otro Supervisor con delegación de responsabilidad, o por el jefe inmediato superior o por el jefe de mantenimiento de la planta.
- Para el caso de ejecución de obras o proyectos en donde sea necesario efectuar intervenciones en equipos o instalaciones varias, también tendrá vigencia el presente procedimiento, en donde el rol de supervisor ejecutante será realizado en todas sus fases por el supervisor del proyecto responsable de la ejecución.

- Se debe realizar el formulario de Permiso de Trabajo correspondiente por duplicado, el duplicado para el Supervisor Autorizante y el original el Supervisor Solicitante.

5 ANEXOS

5.1 Formulario de Permiso para la utilización de equipos de izajes
Formulario de Permiso para la Utilización de Equipos y Elementos de Izaje

<table>
<thead>
<tr>
<th>Lugar:</th>
<th>Fecha:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contratista:</th>
<th>Maq. Nº:</th>
<th>Marca:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maquinista:</th>
<th>Tipo de Grúa:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Firma Maquinista:</th>
<th>Análisis de Riesgos: Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Solicitud de Autorización para Realizar los Siguientes Trabajos de Izaje y/o Movimientos:

|……|
|……|
|……|

2. Peso Máximo de Izaje (aproximado) Kgrs. Toneladas

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Elementos de izaje Aprobados en la Tarea Descripta:

<table>
<thead>
<tr>
<th>Eslingas / Estrobos</th>
<th>Grilletes / Cánamos</th>
<th>Aparejos / Tyfor</th>
<th>Otros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº Diám. (mm.) Long.</td>
<td>Nº Diám. (mm)</td>
<td>Nº Cap. (KG.)</td>
<td>Nº Tipo Cap. (kg.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Medidas de Seguridad: – Señalar Otras Medidas de Seguridad Necesarias

<table>
<thead>
<tr>
<th>Necesita Supervisión de Responsable en Seguridad</th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Necesita Presentación de Instructivos Aprobados de la Tarea</th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Necesita Verificar la Presencia de Canal –Cables y Cañería en el Area</th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Necesita Chequear los Elementos de Izaje</th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Necesita Cercar y Señalar el Área de Operación</th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Apellido y nombre supervisor Autorizante
Fecha
Firma

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Apellido y nombre supervisor Solicitante
Fecha
Firma

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Apellido y nombre supervisor Ejecutante
Fecha
Firma

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO VII: Norma de Seguridad - Seguridad Eléctrica

1 OBJETIVO

El propósito de este programa es suministrar requerimientos generales de seguridad, aplicables a las actividades de trabajo que involucran equipos eléctricos, con el fin de asegurarse de que se realizan prácticas de trabajo eléctrico seguro en el Complejo de Generación Tucumán.

Los empleados de la instalación no deben trabajar directamente con partes energizadas, como así también ningún operario de la instalación u otro bajo su control, deberá estar expuesto a la posibilidad de contacto con partes energizadas por una acción inadvertida sin estar autorizado adecuadamente.

Cuando resulte necesario realizar trabajos en un área donde es probable que haya exposición a circuitos energizados o peligros eléctricos, se debe adherir a las precauciones especiales delineadas en este programa y el trabajo debe ser realizado por empleados que hayan sido capacitados para reconocer y evitar los peligros a los cuales estarán expuestos.

2 ALCANCE

Todas las instalaciones de la Empresa.

3 ABREVIATURAS Y DEFINICIONES

CMASS: Calidad, Medio Ambiente, Seguridad, y Salud Ocupacional.
4 DESCRIPCIÓN

4.1 En casos en que el trabajo a realizar requiera que los empleados trabajen sobre o
cerca de elementos circuitales o equipos expuestos, y haya peligro de heridas por
un shock eléctrico, movimiento inesperado de equipos, u otros peligros eléctricos,
los elementos circuitales y equipos que pongan en peligro a los empleados serán
desenergizados y asegurados/etiquetados en concordancia con el Procedimiento
PRSS-ARGCTT-05 “Bloqueo y Rotulado” de YPF Energía Eléctrica S.A.

4.2 Cuando una tarea requiere trabajos que puedan exponer a un individuo a contacto
físico con tales piezas, las fuentes de tensión del equipo deben estar:

- Desenergizadas.
- Cerradas y Rotuladas.
- Comprobadas a tensión cero.
- Puestas a tierra.

4.3 Cuando no resulte factible desenergizar y asegurar o etiquetar los circuitos
eléctricos y equipos, se les permitirá a los empleados, con la autorización del
Gerente de Generación, trabajar sobre o cerca de conductores y elementos
circuitales eléctricos energizados, siempre y cuando se implementen las prácticas
adecuadas de trabajo relativas a la seguridad, tratadas más adelante y
especificadas por la Tabla 1 en el Anexo 1 para el nivel de tensión del equipo
eléctrico expuesto. El Anexo 1 es la hoja de revisión que debe ser completada
toda vez que se realice un trabajo sobre o cerca de equipos eléctricos /
electrónicos energizados.

4.4 En ningún caso están autorizados los empleados de YPF Energía Eléctrica
S.A. para trabajar sobre o cerca de elementos circuitales o equipos energizados
cuando el nivel de tensión exceda los 600 voltios, nominal debido a los peligros
extremos que trae aparejados y a la falta de experiencia habitual en trabajos con sistemas de alta tensión. En estos casos, se debe utilizar los servicios de un contratista eléctrico autorizado. (Nota: Se permite una excepción a esta regla sólo en aquellos proyectos en que se contrata a un Electricista de Alta Tensión Calificado para trabajar en equipos / sistemas de alta tensión.)

4.5 No se les permitirá a los empleados trabajar en áreas en las cuales resulte probable que encuentren peligros eléctricos a menos que hayan sido entrenados y conozcan a fondo las prácticas de trabajo seguro especificadas más adelante.

4.6 Las prácticas de trabajo relativas a la seguridad para ser usadas al trabajar en o cerca de equipos energizados son:

4.6.1. Estado de alerta de los empleados

4.6.1.1. No se les debe permitir, a sabiendas, a los empleados que trabajen en o cerca de circuitos energizados cuando su estado de alerta esté reconociblemente disminuido debido a enfermedad, fatiga u otras razones.

4.6.2. Iluminación

4.6.2.1. Los empleados no deben ingresar a espacios que contengan elementos eléctricos expuestos a menos que estén provistos de iluminación adecuada. Los empleados no se internarán ciegamente en áreas que puedan contener equipos energizados.

4.6.3. Consideraciones de espacio
4.6.3.1. Cuando el trabajo cercano a un equipo eléctrico expuesto se dé en un área tal que los confinamientos de espacio sean una preocupación, (tales como detrás de tableros o centrales de control de motor), se debe prestar especial consideración al número de empleados que trabajan en el área y a la cantidad de equipo en el lugar para no interferir con el tránsito seguro cerca de circuitos expuestos.

4.6.4. Margen de Seguridad de Trabajo (Distancia Segura)

4.6.4.1. La dimensión del espacio de trabajo en dirección a partes electrizadas que operen a 600 voltios o menos y con probabilidad de requerir examen, ajuste, servicio o mantenimiento mientras estén activas no será menor a lo que se indica en la Tabla 2 del Apéndice A, y tampoco menor a lo que se indica en la Tabla 3 del Apéndice A para partes electrizadas que operen a más de 600 voltios. Las distancias se medirán desde las partes electrizadas si éstas están expuestas o desde la abertura frontal del recinto si éste está cerrado.

4.6.5. Vestimenta conductora

4.6.5.1. Artículos conductores consistentes en joyas y ropa tales como mallas de reloj, brazaletes, anillos, collares, delantales metalizados, tela con hilo conductor, hebillas de cinturón o equipo metálico para la cabeza no serán usados donde tales artículos presenten un peligro de contacto eléctrico con elementos energizados expuestos.

4.6.6. Herramientas aisladas
4.6.6.1. Los empleados deben usar herramientas o equipo de manejo debidamente aislados donde sea posible que estos artículos hagan contacto accidental con equipos o elementos energizados. Esto incluye equipos de manejo de fusible debidamente aislados (adecuadamente aislados para el circuito de tensión) cuando se desea quitar o instalar fusibles para terminales de fusibles energizadas.

4.6.7. Cuidado de la Propiedad y Funciones de Conserjería

4.6.7.1. Estas funciones no se deben realizar en forma adyacente a elementos eléctricos energizados expuestos cuando tales elementos presenten un peligro de seguridad eléctrica, a menos que se tomen las precauciones adecuadas. El agua, el vapor, el fluido limpiador conductor, las virutas de acero o la tela metalizada son ejemplos de materiales no apropiados para su uso cerca de componentes energizados, a menos que se sigan los procedimientos que prevendrán contacto eléctrico.

4.6.8. Líneas aéreas

4.6.8.1. Cuando se realice un trabajo en lugares que posean líneas aéreas energizadas sin guarda ni aisladas, se tomarán precauciones para evitar que los empleados tomen contacto con tales líneas directamente (a través del cuerpo) o indirectamente (a través de herramientas o equipos conductores, es decir escaleras). Cuando el trabajo cerca de
líneas aéreas lo requiera, se mantendrá una mínima distancia con esas líneas de acuerdo con la tabla 1.

<table>
<thead>
<tr>
<th>Tensión Nominal a Tierra</th>
<th>Distancia Mínima</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 KV o menos</td>
<td>3 metros</td>
</tr>
<tr>
<td>50 KV o más</td>
<td>3 metros</td>
</tr>
<tr>
<td>(Agregar 10 cm. por cada 10 KV por encima de 50 KV)</td>
<td></td>
</tr>
</tbody>
</table>

4.6.9. Escaleras portátiles

4.6.9.1. Las escaleras portátiles serán solamente del tipo no conductor.

4.6.10. Ropa y equipo de protección

4.6.10.1. Los empleados se protegerán de heridas utilizando un equipo de protección adecuado mientras trabajen en situaciones en las que haya peligros eléctricos potenciales. Todo el equipo de protección personal tendrá diseño y fabricación seguros para la parte específica del cuerpo a ser protegida y para el trabajo a ser realizado. Todo el equipo de protección será inspeccionado antes de cada uso, examinado cada año, mantenido y almacenado en condiciones seguras y confiables.

4.6.11. Protección Ocular y Facial

4.6.11.1. Se usará protección ocular o facial adecuada para tensiones que sobrepasen los 300 voltios, nominales y cuando se realice un
trabajo en áreas expuestas de equipos donde haya un peligro de lesión en los ojos o la cara por arcos o destellos eléctricos.

4.6.12. Guantes de Seguridad Eléctrica

4.6.12.1. Se usarán guantes aislados adecuados para tensiones que sobrepasen los 300 voltios, nominales; ver tabla 2 para clases de guantes y régimen de tensión correspondiente. Cuando se usen guantes de goma, estarán protegidos por guantes exteriores de cuero o lienzo. Además, los guantes de goma serán probados al aire antes de cada uso.

<table>
<thead>
<tr>
<th>Clase de Elemento Aislante</th>
<th>Tensión de Uso Máximo Nominal, Fase-Fase a-c, rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>1</td>
<td>7.500</td>
</tr>
<tr>
<td>2</td>
<td>17.000</td>
</tr>
<tr>
<td>3</td>
<td>26.000</td>
</tr>
<tr>
<td>4</td>
<td>36.000</td>
</tr>
</tbody>
</table>

Nota: La clasificación de tensión a-c (rms) del equipo de protección designa la tensión de diseño nominal máximo del sistema energizado en el cual se puede trabajar con seguridad. La tensión de diseño nominal es igual a la fase para la tensión de fase en circuitos multifásicos o a la fase para la tensión de tierra en circuitos monofásicos conectados a tierra.

4.6.13. Mantas, tapetes y barreras protectoras de seguridad eléctrica

4.6.13.1. Se usarán protecciones, barreras o materiales aislantes (adecuados para el régimen de tensión del equipamiento) para proteger a los empleados de heridas provocadas por la
electricidad para tensiones que sobrepasen los 300 voltios, nominales y cuando estén trabajando cerca de partes energizadas cuando pueda haber calentamiento o formación de arcos. Ver tabla 2 para las clases de mantas y tapetes de goma y el régimen de tensión correspondiente. Esto incluye, en todos los casos, un tapete aislante que cubra el piso en el área de trabajo.

4.6.14. Tapetes de goma permanentes

4.6.14.1. Los tapetes de piso aislados de goma e instalados en forma permanente (adecuados para el régimen de tensión del equipamiento) serán instalados en salas de conmutador, centrales de control de motor y todas las otras ubicaciones obligatorias para brindar protección continua en dichos lugares contra cualquier peligro de seguridad eléctrica que se pueda suscitar durante rondas, toma de lecturas o mediciones de rutina. Para centrales de control de motor al descubierto en donde la instalación permanente no es posible, los tapetes de goma deben estar fácilmente disponibles.

4.7 Para alertar a otros empleados acerca de que hay partes o componentes energizados expuestos en el área, se deben usar los siguientes métodos de alerta:

4.7.1. Siempre se usarán señales y etiquetas de seguridad para advertir al empleado que hay peligros potenciales en el área.

4.7.2. Se usarán defensas junto con señales de seguridad cuando sea necesario para prevenir o limitar el acceso del personal a áreas de trabajo donde pueda haber exposición a conductores energizados. No
se deben usar barreras de metal en donde puedan tomar contacto con conductores energizados.

4.7.3. Se usarán señales de mano cuando las áreas de trabajo impidan que las señales y las barreras constituyan medidas efectivas de alerta.

4.8 Solamente a los empleados que tengan amplio conocimiento de trabajo seguro con instrumentos y equipos de prueba en circuitos energizados se les permitirá realizar trabajos de prueba en circuitos o equipos electrónicos en donde haya peligro de lesión debido a un contacto accidental con partes energizadas o uso indebido del equipo de prueba.

4.8.1. Los instrumentos y equipos de prueba y todos los cordones, cables, cordones de alimentación, sondas y conectores de prueba asociados serán inspeccionados visualmente en busca de defectos externos o daño antes de cada uso. Si existe daño, no se debe usar el equipo hasta que haya sido debidamente reparado.

4.8.2. Se tararán todos los instrumentos de prueba y sus accesorios para los circuitos y equipos a los cuales se conectarán; y serán adecuados para el medio ambiente en el cual se usarán.

4.9 Luego de trabajar en el sistema o equipamiento energizado, el empleado que realiza el trabajo es responsable de retirar cualquier equipo de protección personal y barreras, y de volver a colocar y ajustar con seguridad todas las barreras y tapas permanentes.

4.10 Herramientas y equipos eléctricos portátiles
4.10.1. El equipamiento eléctrico portátil incluye artefactos, herramientas, lámparas de mano portátiles y otros aparatos de este tipo que estén conectados mediante cordón y enchufe.

4.10.2. Antes de cada uso, las herramientas eléctricas portátiles deben ser inspeccionadas en busca de daño al enchufe, cordón y a la caja externa. Inspeccione buscando partes sueltas, grietas o roturas y desgastes que podrían evitar que la aislación funcione debidamente. Además de la inspección previa al uso, todas las herramientas eléctricas portátiles serán examinadas trimestralmente.

4.11 Conexión a tierra

4.11.1. Sólo se usarán cordones y cables que contengan un conductor de puesta a tierra de equipo para equipos eléctricos conectados con cordón y enchufe. Nunca se deben ignorar las conexiones existentes de puesta a tierra de equipos. No se usarán los adaptadores que interrumpen la continuidad de la conexión de puesta a tierra de equipos (es decir convertir un enchufe de tres espigas en uno de dos espigas). Sin embargo, en el caso de herramientas eléctricas con doble aislación se puede usar un cordón flexible sin un conductor de puesta a tierra.

4.11.2. Toda vez que se usen herramientas eléctricas portátiles, el equipo debe estar protegido mediante un interruptor de circuito de pérdida a tierra. Puede ser en forma de un receptáculo alimentado desde un disyuntor de un interruptor de circuito de pérdida a tierra o un cable flexible alimentado desde un receptáculo sin un interruptor de circuito de pérdida a tierra,
pero que posee salidas protegidas por un interruptor de circuito de pérdida a tierra desde las cuales se hace la conexión al equipo portátil.

4.12 Ubicaciones del equipamiento eléctrico

4.12.1. Las entradas a recintos que contengan partes energizadas con alta tensión y expuestas, tales como playas de distribución de transformadores, línea de generador y gabinetes neutrales o centrales de control de motor con entrada posterior, se mantendrán aseguradas si es posible. Las puertas o portones de acceso a habitaciones, bóvedas o recintos cercados que contengan equipamiento eléctrico podrán abrirse fácilmente desde adentro sin el uso de una llave.

4.12.2. Se colocarán señales de advertencias visibles y permanentes que prohíban la entrada a personas no calificadas en todas las puertas o portones que den acceso a recintos que contengan partes y conductores energizados y expuestos. Dichas señales serán legibles a 12 pies, tendrán suficiente durabilidad para soportar el medio ambiente en que se encuentren y dirán sustancialmente lo siguiente:

“ADVERTENCIA-ALTA TENSION-ALEJESE.”

4.13 Precauciones generales

4.13.1. Implemente procedimientos de Bloqueo y Rotulado antes de realizar cualquier trabajo eléctrico.
4.13.2. Haga pruebas dielécticas a los guantes y mantas de goma a intervalos regulares. Deben ser almacenados en compartimientos secos. Los materiales aislantes pierden su efectividad con el tiempo y el uso descuidado y no deben ser considerados automáticamente seguros. Deben ser probados al aire antes del uso y mantenidos empolvados.

4.13.3. Notifique a todo el personal involucrado antes de arrancar cualquier equipo eléctrico.

4.13.4. Siempre suponga que un circuito está “caliente” hasta que lo haya revisado. Tenga cuidado con los cables sueltos.

4.13.5. Familiarícese por completo con todos los interruptores de disparo de emergencia.

4.13.6. No energice un arrancador o interruptor etiquetado sin la presencia de la persona que colocó la etiqueta.

4.13.7. Siempre quite la carga de un circuito antes de accionar el interruptor. Sólo se usa un desconectador para aislar el circuito. Siempre cierre las puertas del panel en los interruptores antes de que sean encendidos.

4.13.8. Ventile bien el área de trabajo y mantenga los fuegos y chispas lejos de las baterías de carga ya que los vapores ácidos explotarán. El gas de hidrógeno se genera mientras se carga una batería.

4.13.10. Nunca mire directamente los interruptores o seccionadores cuando energice y use sólo una mano.

4.13.11. Todo trabajo de reparación y mantenimiento en equipamiento eléctrico debe ser realizado solamente por personal autorizado y entrenado.

4.13.12. Cuando se deba realizar trabajos de reparación en circuitos energizados, se deben tomar las siguientes precauciones:

 4.13.12.1. El trabajo debe ser realizado sólo por personal entrenado y experimentado.
 4.13.12.2. Debe haber una iluminación adecuada al trabajo que se debe realizar, no debe ser excesiva ni insuficiente.
 4.13.12.3. El trabajador debe pararse sobre material no conductor tales como capas o lienzos secos, madera seca o goma.

4.13.14. Use solamente herramientas aprobadas y equipamiento de manejo de circuito caliente. Familiarícese por completo con el circuito en el cual ha de trabajar.
4.13.15. Los asistentes se deben ubicar cerca del circuito o disyuntor principal para que el equipo pueda ser desenergizado inmediatamente en una emergencia.

4.13.16. Las escaleras y andamios de metal son conductores eléctricos, nunca se los debe usar cerca de circuitos eléctricos o en lugares en donde puedan entrar en contacto con circuitos eléctricos.

4.13.17. Los cordones de extensión no deben ser atados a las salidas eléctricas. Estos cordones deben estar libres para que puedan ser desenchufados en una emergencia.

4.13.18. Siempre use el mango al levantar o bajar herramientas. Nunca baje herramientas eléctricas por el cordón.

4.14 Inspecciones

4.14.1. Se debe realizar una inspección mensual de todo el equipo eléctrico y accesorios, y los descubrimientos se deben registrar en el Libro de Novedades de Planta.

4.14.2. También se debe realizar una inspección mensual en todas las herramientas de mano eléctricas, cordones prolongadores de luz de bajada y soldadores eléctricos y se la debe registrar en el formulario de informe correspondiente.
5 ANEXOS

Anexo 1. Tablas de Prácticas de Trabajo Seguro

Anexo 2. Lista de Revisión para Trabajar en Equipamiento Electrónico/Eléctrico Energizado
ANEXO 1

Tabla 1 Prácticas de Trabajo Seguro

<table>
<thead>
<tr>
<th>Tensión</th>
<th>Quite las Joyas (S/N)</th>
<th>Herramientas Aisladas (S/N)</th>
<th>Guante de Goma (S/N)</th>
<th>Protección Ocular (S/N)</th>
<th>Tapete de Goma (S/N)</th>
<th>Señales de Seguridad (S/N)</th>
<th>Distancia Segura (Tabla 2/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>línea (a) Tabla 2</td>
</tr>
<tr>
<td>151-300</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>línea (b) Tabla 2</td>
</tr>
<tr>
<td>301-600</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>línea (b) Tabla 2</td>
</tr>
<tr>
<td>>600 (*)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Tabla 3</td>
</tr>
</tbody>
</table>

(*) Los empleados de YPF EE SA no están autorizados en ninguna situación a trabajar en o cerca de partes de circuitos o equipamiento energizados cuando el nivel de tensión sobrepase los 600 voltios, nominal debido a los peligros extremos que trae aparejados y a la falta de experiencia habitual al trabajar en sistemas de alta tensión. En estas situaciones, se debe hacer uso de los servicios de un contratista eléctrico autorizado.

Tabla 2 Margen de Seguridad de Trabajo (Menos de 600 Voltios)

<table>
<thead>
<tr>
<th>Tensión Nominal a Tierra</th>
<th>Espacio Mínimo (pies)</th>
<th>Distancia para condición (pies)</th>
<th>condición (pies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>151-600</td>
<td>3</td>
<td>3,5</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabla 3 Margen de Seguridad de Trabajo (Más de 600 Voltios)

<table>
<thead>
<tr>
<th>Tensión Nominal a Tierra</th>
<th>Espacio Mínimo (pies)</th>
<th>Distancia para condición (pies)</th>
<th>condición (pies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>601-2500</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2501-9000</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9001-25000</td>
<td>5</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>25.000-75kV</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Más de 75kV</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

En donde para las Tablas 2 y 3, las condiciones (1), (2) y (3) dicen lo siguiente:

(1) Partes electrizadas expuestas de un lado y ninguna parte electrizada o conectada a tierra del otro lado del espacio de trabajo, o partes electrizadas expuestas en ambos lados protegidas con efectividad por madera adecuada u otros materiales aislantes. El cable aislado o las barras conductoras que operen a no más de 300 voltios no serán considerados partes electrizadas.

(2) Partes electrizadas expuestas de un lado y partes conectadas a tierra del otro lado. (Para Tabla 2; las paredes de concreto, ladrillo o azulejos serán consideradas superficies conectadas a tierra).

(3) Partes electrizadas expuestas en ambos lados del espacio de trabajo (no protegidas como se estipula en Condición (1) con el operador en medio.

NOTA: Las distancias se medirán desde las partes electrizadas si éstas están expuestas o desde el frente o abertura del recinto si las mismas están cercadas.
ANEXO VIII: Norma de Seguridad - Equipos de Protección personal

6 OBJETIVO

El propósito de este procedimiento es el de:

Definir las reglas básicas para proteger y/o minimizar las lesiones que los empleados pudieran sufrir ante eventuales incidentes ó accidentes que pudieran ocurrir en el Complejo de Generación Tucumán, mediante el uso y la selección de los EPP adecuados.

7 ALCANCE

Todas las instalaciones del Complejo de Generación Tucumán.

8 ABREVIATURAS Y DEFINICIONES

CMASS: Calidad, Medio Ambiente, Seguridad, y Salud Ocupacional.

Complejo de Generación Tucumán: UO de generación eléctrica que comprende a las Centrales Térmicas Tucumán y San Miguel de Tucumán ubicadas en la localidad de El Bracho – provincia de Tucumán, pertenecientes a YPF Energía Eléctrica S.A.

9 DESCRIPCIÓN

9.1 Inventario de EPP

4.1.1. Cada planta deberá realizar un inventario de todos los EPP que tiene en uso o en almacenes. El Inventario de EPP deberá ser preparado en base a las principales partes del cuerpo (ojos, cara, cabeza, manos, pies, protección respiratoria, protección auditiva). Consignar el tipo, estilo,
marca, número de pieza y talle del EPP que se encuentre disponible. Utilizar el Formulario de Inventario de EPP que se incluye como muestra en el Anexo A para consignar todos los datos disponibles.

4.1.2. El Gerente de la Central en conjunto con el responsable de CMASS, designará un Administrador del Programa para distribuir y controlar la entrega de los EPP.

4.1.3. El inventario deberá realizarse anualmente o cuando se encuentre en niveles bajos de stock.

9.2 Conciliación del Inventario de EPP y la Evaluación de Riesgo

4.2.1. Una vez completado el Inventario de EPP y las Evaluaciones de Riesgo, el Administrador del Programa de EPP debe verificar que la cantidad real de EPP en el establecimiento cubra los requerimientos de EPP necesarios para efectuar las tareas evaluadas. Los EPP que los empleados usan en la actualidad y los EPP de reposición, deben ser del tipo apropiado según se identifica en las Evaluaciones de Riesgo individuales. Se mantendrán cantidades suficientes (stock crítico) de EPP como para cumplir con las necesidades de la Planta. Se deberá tener en cuenta dentro de stock crítico las demoras en la entrega o por la distancia o por ser material importado.

9.3 Requerimientos de EPP

Nota: Los EPP son el último método de control de exposición a riesgos. Se deben considerar, en forma fundamental, las herramientas administrativas, los controles de ingeniería y las protecciones de los equipos.

Nota: Para todas las compras nuevas de EPP resistentes a las llamas, se deberán elegir elementos fabricados con telas ignífugas.
4.3.1. En los Establecimientos de YPF EE se requiere **como mínimo** el uso del siguiente EPP para protección contra los riesgos presentes en el Establecimiento.

Protección Ocular y Facial - Anteojos de Seguridad: Los empleados de la planta sólo utilizarán los anteojos de seguridad que cumplan con los requerimientos de Normas IRAM o de Normas Internacionales, siempre la más exigente. Los marcos deben ser de material plástico y las lentes deben ser resistentes al impacto. Los protectores laterales permanentes son obligatorios.

Aquéllos empleados que usen anteojos recetados deberán usar anteojos de seguridad que incorporen las lentes recetadas o deberán usar una protección por encima de los anteojos recetados. La protección adicional deberá ser de material resistente al impacto.

Como protección contra el brillo solar o radiación de luz dañina, se deberán utilizar anteojos de seguridad equipadas con lentes que tengan un filtro con un número apropiado de oscurecimiento para el trabajo que se está realizando.

No se podrán utilizar lentes de contacto si el trabajo del empleado incluye alguna de las siguientes situaciones:

- Trabajos con productos químicos incluyendo, aunque sin limitarse a los mismos: humos, vapores, nieblas, solventes y material con partículas (ej.: fibra de vidrio).
- Soldadura, corte y pulido.
- Trabajos en ambientes con polvo.

Protección de la Cabeza
Los empleados de la planta usarán casco todo el tiempo en que se encuentren en ella, con la excepción de las áreas autorizadas y siempre que exista la posibilidad de un riesgo.

Los cascos deberán cumplir con las Normas IRAM 3620 para protección contra cualquier caída de objetos. Cuando se requiera una protección contra un posible choque eléctrico, deberá usarse casco dieléctrico.

Deberá haber un espacio de 1” (2,5 cm) a 11/4 “ (3,2 cm) entre la parte superior de la cabeza y la parte lateral inferior del casco.

No se deben llevar objetos dentro del casco, ya que se necesita el espacio suficiente para que el sistema de protección sea efectivo o amortigüe el golpe.

Los sistemas de suspensión de los cascos deberán ser reemplazados cada vez que se encuentre deteriorado.

Todos los cascos deben ser reemplazados cada dos a cinco años, o cuando sufran un daño físico (corte, abolladura, etc.) que podría comprometer la integridad de dicha protección. Por otra parte, se deberá tener en cuenta la fecha de vencimiento identificada en el casco.

Protección para los Pies

Se requiere a todos los empleados de la Planta, excepto aquellos que sólo trabajen en las áreas administrativas que usen zapatos de seguridad con puntera dura o de acero, suela de goma y parte superior de cuero, aprobados por IRAM 3643. El empleado administrativo que requiera dirigirse a planta, deberá usar calzado de seguridad.
Cuando se trabaja cargando / descargando productos químicos (ej.: amoníaco), es obligatorio el uso de botas de goma compatible con dichas sustancias químicas IRAM 3342.

Será obligatorio el uso del siguiente EPP **cuando lo determinen** las evaluaciones de riesgo:

Cuando exista el riesgo de salpicadura es obligatorio el uso de la siguiente **Protección Ocular**:

Antiparras para Productos Químicos - Todas las antiparras para productos químicos deberán cumplir con los requerimientos de IRAM. Las lentes deberán ser resistentes al impacto. Se deberán colocar botones de ventilación sobre las antiparras.

Protección facial - Los empleados deberán usar sólo las máscaras para la cara que cumplan con los requerimientos de IRAM.

Tanto las antiparras para productos químicos como las máscaras faciales deberán ser utilizadas cuando se trabaje cargando / descargando productos químicos tales como el amoníaco, el ácido sulfúrico, sustancias cáusticas, etc.

Se deberá colocar en cada área donde sea obligatoria la protección ocular una señal estándar que diga: PRECAUCIÓN, ÁREA DE RIESGO OCULAR, NO INGRESAR SIN PROTECCIÓN OCULAR o su equivalente. Todos los empleados, trabajadores contratados, y visitantes que ingresen a dicha área deberán usar protección ocular.

Protección Corporal

Para el manejo de productos químicos (incluyendo la carga / descarga de los mismos), los empleados deben usar un traje
completo de protección contra sustancias químicas incluyendo saco y mameluco, delantal plástico o de goma, guantes de goma, botas resistentes a los químicos, antiparras para protección contra las sustancias químicas y máscara facial.

Para realizar trabajos de soldadura, los empleados deberán usar un saco o chaqueta de cuero, guantes de cuero de soldador, ropa resistente a las llamas, y un casco/máscara facial con lentes apropiadas.

Para trabajar con equipos eléctricos, los empleados deberán usar indumentaria resistente a las llamas y guantes con protección dieléctrica.

Para el manejo o manipulación de materiales generales, los empleados deberán usar, como mínimo, guantes para todo uso. Se podrá requerir otro tipo de protección del cuerpo dependiendo del tipo de material que se está manipulando.

Protección para las Manos

Se deberá usar una protección apropiada para las manos cuando las mismas estén expuestas a riesgos, tales como la absorción cutánea de sustancias dañinas; cortes graves, abrasiones o laceraciones; pinchazos; quemaduras de sustancias químicas; o quemaduras térmicas.

Al seleccionar la protección para las manos los empleados deberán considerar las tareas a realizar, la duración de la tarea, y los riesgos reales o potenciales a los que pueden estar expuestos.
En la realización de toda tarea en planta, se deberá usar guantes de trabajo, excepto cuando el uso de los mismos creara un riesgo, como en el caso de la cercanía a piezas que están en movimiento.

Cuando se manejan ácidos o sustancias cáusticas se deben usar guantes de goma, resistentes a los ácidos o sustancias químicas.

Los guantes de goma también son necesarios en ciertas situaciones que involucren trabajos con electricidad. En este caso deben ser dieléctricos, aptos para la tensión con la cual se trabaja.

Deben utilizarse guantes resistentes al calor o aislantes cuando se manipulan mangueras de vapor o cuando se realizan tareas en las que los guantes habituales de trabajo no ofrecen protección adecuada contra las quemaduras en las manos.

Los guantes de uso general, prevendrán daños al manipular materiales ásperos o sustancias que puedan irritar la piel.

Siempre se deberán usar guantes de cuero o con las palmas de cuero al manipular sogas de alambre.

Los guantes de tela de algodón, ofrecen una protección adecuada al manipular caños.

Se deben usar guantes cuando las manos están mojadas a causa de alguna sustancia que pueda provocar una falta de agarre.

Protección Auditiva

Los empleados usarán protección auditiva aprobada cuando estén expuestos a niveles de ruidos mayores a los 85 dBA y/o en los lugares en que haya carteles prohibiendo el ingreso sin la protección auditiva obligatoria.
Para obtener mayor información con respecto a los requerimientos de protección auditiva, se recomienda consultar el instructivo de CMASS INS-ARGCTT-20 Conservación de la Audición.

Protección Contra Caídas

Los empleados deberán usar un arnés de seguridad aprobado por Norma IRAM o internacional, de cuerpo entero con cuerda que absorba golpes cuando el trabajo incluya escalar o trabajar a una altura superior a los 6 pies (1,80 m).

Todos los arneses de seguridad deben ser 100% de fibra sintética. No se aceptarán hebillas, cinturones, o equipos de sujeción, etc. hechos de cuero. Todos los ganchos deben ser con traba. No se aceptarán cinturones para el cuerpo o ganchos sin traba como parte del equipo de protección contra caídas.

El arnés deberá adecuarse al talle de la persona, debe estar correctamente ajustado, y abrochado. La cuerda no debe estar más floja que lo necesario, ni ser más larga que la altura a subir.

Todos los arneses de seguridad deberán ser revisados periódicamente para evaluar el desgaste excesivo o los daños a los mismos que puedan ser una causa de falla.

Los arneses con daños visibles o muy gastados deben ser destruidos, no descartados.

Los arneses de seguridad no deben ser sometidos a un trato que los pudiera dañar o debilitar.

Cada persona que ingrese a trabajar en un espacio confinado deberá utilizar un arnés de cuerpo entero con línea de vida lo suficientemente larga, para que sea sostenida por un ayudante y ante cualquier emergencia ó desmayo pueda ser retirado.
Protección Respiratoria

Los empleados deberán usar protección respiratoria aprobada para todas las tareas designadas que requieran de su utilización.

Para mayor información con respecto a los requerimientos de protección respiratoria, se recomienda consultar el Instructivo INS-ARGCTT-07 Protección Respiratoria.

10 ANEXOS

Anexo 1. Inventario del Equipo de Protección Personal.

Anexo 2. Consideraciones para el mantenimiento del stock de EPP.
ANEXO 1

Inventario de Equipo de Protección Personal

<table>
<thead>
<tr>
<th>EPP Tipo</th>
<th>Certificado</th>
<th>Parte del cuerpo</th>
<th>Descripción del riesgo</th>
<th>N° de pieza</th>
<th>Cantidad disponible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instrucciones: Completar el Inventario de Equipo de Protección Personal (EPP) por cada artículo de EPP que se usa en la actualidad en la planta. En Tipo de EPP, consignar el fabricante, modelo y estilo de EPP disponible. Ingresar el EPP según la parte del cuerpo afectada, tales como ojos y cara (EF), manos (HA), cabeza (HE), pies (F), cuerpo (B), respiratorio (R) o auditivo (HP). Incluir una descripción del riesgo por cada artículo de EPP y asignar un N° de Pieza como referencia. Para el N° de Pieza, usar los símbolos para cada parte del cuerpo y una numeración secuencial para identificar los tipos similares de EPP (ej: EF01, EF02, EF03, etc.).
INSTRUCCIONES: Completar el Inventario de Equipo de Protección Personal (EPP) por cada artículo de EPP que se usa en la actualidad en la planta. En Tipo de EPP, consignar el fabricante, modelo y estilo de EPP disponible. Ingresar el EPP según la parte del cuerpo afectada, tales como ojos y cara (EF), manos (HA), cabeza (HE), pies (F), cuerpo (B), respiratorio (R) o auditivo (HP). Incluir una descripción del riesgo por cada artículo de EPP y asignar un N° de Pieza como referencia. Para el N° de Pieza, usar los símbolos para cada parte del cuerpo y una numeración secuencial para identificar los tipos similares de EPP (ej: EF01, EF02, EF03, etc.).

<table>
<thead>
<tr>
<th>EPP Tipo</th>
<th>Parte del cuerpo</th>
<th>Descripción del riesgo</th>
<th>N° de pieza</th>
<th>Certificado</th>
<th>Cantidad disponible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seguridad para el laboratorio, guantes de</td>
<td>HA</td>
<td>Quemaduras con productos químicos</td>
<td>HA01</td>
<td>Sí</td>
<td>NO</td>
</tr>
</tbody>
</table>
Consideraciones para el mantenimiento del stock de EPP

Resulta indispensable tener en cuenta las fluctuaciones posibles en las salidas de material y de las esperas de suministro, para determinar la cantidad objeto a pedir.

El pedido \(Q \) lanzado en un instante \(t_1 \) (figura 1), debe permitir asegurar las necesidades de forma tal que el stock mínimo que exista en el almacén desde el momento de la recepción de la cantidad correspondiente a este pedido hasta el momento en que se reciba la cantidad solicitada en el pedido siguiente (lanzado en un instante \(t_2 \)) sea todavía suficiente para limitar los riesgos de rotura de stock.

![Diagrama de mantenimiento del stock de EPP](image)

figura 1

Donde

- \(d \) espera del suministro expresada en meses
- \(p \) duración del ciclo de reaprovisionamiento expresada también en meses, o sea \(p = \frac{12}{x} \)

La cantidad a pedir \(Q \) elegida en un instante \(t_1 \) ha de cubrir el riesgo de rotura del stock posible en el instante

\[t_1 + d + p \]

Por lo tanto si fuera posible repetir el ejemplo un gran número de veces, el nivel del stock comprobado en dicho último instante, se distribuiría alrededor de una posición media, que designaremos con \(s \). Este nivel medio queda definido por la relación:

\[s = M + Q + c - V (d + p) \]

\(s \) = stock final
\(M \) = existencias en el almacén en el instante \(t1 \)
\(C \) = cantidad eventualmente pedida y no recibida aún.
\(V \) = consumo medio durante el intervalo de tiempo \((d + p)\) definido por el consumo medio por unidad de tiempo (sea de \(V \) unidades) multiplicado por la duración \((d + p)\).

Entonces esta relación nos permite escribir la fórmula de aprovisionamiento que determina la cantidad a pedir:

\[Q = V (d + p) + s - (M + c) \]

El stock mínimo medio \(s \) no es otra cosa que el stock de protección, mantenido para limitar los riesgos de rotura.

El empleo de esta fórmula permite, pues, pedir cantidades variables teniendo en cuenta las posibles fluctuaciones de la espera de suministro y de la demanda de consumo. Por otra parte, la suma de todos los pedidos lanzados durante el año representa el consumo total anual y por consiguiente, el lote correspondiente a cada pedido será, como promedio:

\[Q = Vp \]

Dicha cantidad corresponde, al lote económico de compra.