
This article was downloaded by: [24.232.155.226]
On: 07 September 2015, At: 12:11
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick
Place, London, SW1P 1WG

Click for updates

International Journal of Electronics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tetn20

FPGA-Specific Decimal Sign-magnitude Addition and
Subtraction
Martín Vázquezab & Elías Todorovichab

a Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
b Faculty of Engineering, FASTA University, Mar del Plata, Argentina
Accepted author version posted online: 04 Sep 2015.

To cite this article: Martín Vázquez & Elías Todorovich (2015): FPGA-Specific Decimal Sign-magnitude Addition and
Subtraction, International Journal of Electronics, DOI: 10.1080/00207217.2015.1089945

To link to this article: http://dx.doi.org/10.1080/00207217.2015.1089945

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service
to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting,
typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication
of the Version of Record (VoR). During production and pre-press, errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/00207217.2015.1089945&domain=pdf&date_stamp=2015-09-04
http://www.tandfonline.com/loi/tetn20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207217.2015.1089945
http://dx.doi.org/10.1080/00207217.2015.1089945
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

To appear in the International Journal of Electronics
Vol. 00, No. 00, Month 20XX, 1–22

FPGA-Specific Decimal Sign-magnitude Addition and Subtraction

Mart́ın Vázquezab∗ , Eĺıas Todorovichab

aUniversidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina;
bFaculty of Engineering, FASTA University, Mar del Plata, Argentina

(January 2015)

The interest in sign-magnitude representation in decimal numbers lies in the IEEE
754-2008 standard, where the significand in floating-point numbers is coded as sign-
magnitude. However, software implementations do not met performance constraints
in some applications and more development is required in programmable logic, a
key technology for hardware acceleration. Thus, in this work two strategies for sign-
magnitude decimal adder/subtractors are studied and six new FPGA-specific circuits
are derived from these strategies. The first strategy is based on ten’s complement
adder/subtractors and the second one is based on parallel computation of an unsigned
adder and an unsigned subtractor. Four of these alternative circuits are useful for at
least one area-time trade-off and specific operand size. For example, the fastest sign-
magnitude adder/subtractor for operand sizes of 7 and 16 decimal digits is based on the
second proposed strategy with delays of 3.43 and 4.33 ns, respectively; but the fastest
circuit for 34-digit operands is one of the three specific implementations based on ten’s
complement adder/subtractors with a delay of 4.65 ns.

Keywords: Carry-chain; Decimal Arithmetic; IEEE 754-2008; Programmable Logic;
Sign-magnitude

1. Introduction

Binary arithmetic is exposed to accuracy problems in commercial, financial, tax, sci-
entific, and engineering applications (Aswal, Perumal, & Srinivasa Prasanna, 2012;
Cowlishaw, 2003). In this way, results of arithmetic operations, currency conversion,
rounding stages, etc., may not be accurate enough to satisfy legal requirements or
may have an impact on bank balance sheets. As decimal arithmetic may solve these
problems, IEEE has included decimal number specifications in the 754-2008 Stan-
dard for Floating Point Arithmetic (754-2008 IEEE Standard for Floating-Point
Arithmetic, 2008). However, the performance required by applications with inten-
sive decimal arithmetic may not be met by conventional software-based decimal
arithmetic libraries (Cowlishaw, 2003). These libraries are one to two orders of
magnitude slower than hardware implementations (Anderson, Tsen, Wang, Comp-
ton, & Schulte, 2009; Schulte, Lindberg, & Laxminarain, 2005). For this reason,
decimal floating-point arithmetic logic units (ALU) are being implemented in some
high-end processors. For example, decimal floating point has been introduced on
the IBM System z9 processor, and an enhanced decimal floating-point unit has

∗Corresponding author. Email: mvazquez@exa.unicen.edu.ar

1

Publisher: Taylor & Francis
Journal: International Journal of Electronics DOI:
10.1080/00207217.2015.1089945

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

been included in the IBM POWER6 and z10 processors (Schwarz, Kapernick, &
Cowlishaw, 2009). Nevertheless, few decimal hardware cores have been designed
by taking advantage of specific resources available in FPGAs (Field Programmable
Gate Array). Programmable logic is one of the main technological options for hard-
ware acceleration. In this way, decimal cores can be used in a high performance
computing (HPC) context.

Intel reached different conclusions from those of IBM (Bhat, Crawford, Morin,
& Shiv, 2007). They concluded that hardware implementations are only useful if
applications spend a large percentage of their time in decimal floating-point com-
putations. This becomes a strong argument in favor of using programmable logic,
which can be applied when a certain threshold of decimal computation time is re-
quired.

Addition deserves particular attention because it is used as a primitive operation
for computing most arithmetic functions. In classical addition algorithms the ex-
ecution time is proportional to the number n of operand digits. One approach to
reduce the computation time involves modifying the classical algorithms in such a
way as to minimize the computation time of each digit; the time complexity is still
proportional to n, but the proportionality constant can be reduced. This idea is
reinforced in FPGA, where fast circuitry is available for carry-chain.

This paper focuses on signed decimal addition and subtraction, in particular, using
sign-magnitude (SM) representation. Since the significand in floating-point numbers
is coded as SM according to the IEEE 754-2008 standard, the study of circuits for
efficient arithmetic operations in SM is relevant. Furthermore, to the best of the
authors’ knowledge, no previous work has studied the SM decimal addition and
subtraction by taking advantage of the FPGA architecture.

The main contribution of this paper is the design and efficient implementation of
circuits for adding and subtracting BCD (Binary-Coded Decimal) numbers repre-
sented as SM in FPGAs. There are three additional contributions. First, the best
design techniques for BCD adders in FPGA are studied in detail. This is done by
reviewing and comparing the most recent published results (Bioul, Vazquez, De-
schamps, & Sutter, 2010), Vazquez and de Dinechin (2010). Second, a novel circuit
for decimal subtraction of unsigned numbers is presented. This circuit takes advan-
tage of a binary subtractor in an original way. Third, the best techniques for ten’s
complement BCD adders and subtractors in FPGA are studied in detail. This is
done by reviewing and comparing the most recent published results (Bioul et al.,
2010), Vazquez and de Dinechin (2010). The circuit proposed in Vazquez and de
Dinechin (2010) is modified so that it can add and subtract ten’s complement BCD
numbers.

In what follows, lower case variables denote multiple digit words, lower case vari-
ables with subscripts denote digits, and lower case variables with subscripts and
indices denote bits. Thus, ai stands for digit i of operand a, and ai[j] corresponds
to bit j in digit i. Upper case is reserved for Boolean functions of two one-digit
variables in order to avoid confusion with BCD digits.

The rest of the paper is organized as follows: Section 2 is a review of the previous
research. Sections 3 and 4 study unsigned BCD adders and subtractors, respectively.
Section 5 explains ten’s complement BCD adder/subtractors. Section 6 presents a
study of SM BCD adder/subtractors. Section 7 includes the summary and conclu-
sions of this work.

2

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

2. Previous Work

According to Erle (2009), three different approaches have been proposed in the liter-
ature for decimal addition: direct decimal addition, binary addition with correction,
and binary addition with bias and correction. For example Schmookler and Wein-
berger (1971) and more recently Bayrakci and Akkas (2007); Juang, Peng, and Kuo
(2012); Veeramachaneni, Kirthi Krishna, Avinash, P, and Srinivas (2007) present
direct decimal adders based on carry-look ahead algorithms. In addition, Shirazi,
Yun, and Zhang (1989); Svoboda (1969) and more recently Han, Chen, Wahid, and
Ko (2011); Han and Ko (2013); Yehia, Fahmy, and Hassan (2010) among others,
implement this type of adders by using signed-digit representations; this approach
needs converters in order to deal with BCD operands and result. The advantage
of the binary addition with bias and correction is that it uses optimized binary
adders in such a way that the same circuit can handle both decimal and binary
additions, for instance, Dorrigiv and Jaberipur (2014); Vazquez and Antelo (2009);
Wang and Schulte (2007). Kenney and Schulte (2005) and Gorgin and Jaberipur
(2009) explore binary adders with correction, while enabling representations from
1010 to 1111 (overloaded decimal representation) for intermediate results.

Biswas, Hasan, Hasan, Chowdhury, and Babu (2008); Thapliyal, Kotiyal, and
Srinivas (2006); Zhou, Li, and Zhang (2013) implement reversible direct decimal
adders. The purpose of this approach is to decrease the energy dissipation. In re-
versible logic circuits there is a one to one mapping of input and output vectors in
such a way that input states can be reconstructed from the output states.

Another approach consists in converting BCD to binary, computing binary addi-
tions, and converting back to BCD. The drawback is the cost of the converters in
terms of area and speed (Benedek, 1977; Iguchi, Sasao, & Matsuura, 2007; Nicoud,
1971).

As decimal fixed-point adders are required in decimal floating-point ALUs, several
ideas have been developed in that context. For example, Vazquez and Antelo (2009);
Wang, Schulte, Thompson, and Jairam (2009) present adders integrated into IEEE
754-2008 arithmetic cores.

Recently, some decimal adders have been designed for programmable logic devices.
Gao, Al-Khalili, and Chabini (2012); Vazquez and de Dinechin (2010) present multi-
operand decimal adders based on binary adders with pre- and post-correction stages
for 6-input LUT Xilinx devices. A floating point adder/subtractor for BID (Binary
Integer Decimal) operands is presented in Farmahini-Farahani, Tsen, and Compton
(2009); Gonzalez-Navarro, Tsen, and Schulte (2013), whereas Baesler and Teufel
(2009); James, Jacob, and Sasi (2009); Yixiong, Jun, Na, and Jun (2010) have
developed decimal multipliers on FPGA using carry-save adders for the partial
multi-operand additions and ripple-carry BCD adders for the final result. In Yixiong
et al. (2010), FPGA implementations of decimal adders are optimized for 4-input
LUTs by making use of carry-chain circuitry.

In Bioul et al. (2010) a circuit that takes advantage of the fastest carry-chain
circuitry and 6-input LUTs available in current FPGAs is introduced.

3. Unsigned Base-10 Adders

In Bioul et al. (2010) two algorithms were designed to implement efficient unsigned
BCD adders in FPGAs with 6-input LUTs. Both approaches take advantage of

3

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 1. i-th stage implementation of the adder based on the computation of P and G from the binary
addition (Add-I)

Figure 2. i-th stage implementation of the adder based on the computation of P and G from the input
data (Add-II)

the fastest carry-chain circuitry, and are based on the Propagate P and Generate
G functions, computed from the intermediate BCD sum (Add-I) and the input
data (Add-II), respectively. Figs. 1 and 2 show the Add-I and Add-II i -th stage,
respectively. Note that 6-input LUTs can be configured to implement two 5-input
functions (LUT 6:2) (Xilinx Inc., 2012).

In both approaches, as the carry-out ci+1 is a function of ci, the circuit delay
is proportional to the operands width, n with the same slope. In both cases the

4

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 3. i-th stage implementation of the adder based on Vazquez and de Dinechin (2010)

linear parameter is the delay of the multiplexer embedded in the FPGA carry-chain
circuitry, Tmuxcy. The y-intercept for Add-I in (1), bAdd−I , includes the delay of
the initial 4-bit addition, the LUT that computes Pi and Gi, the correction stage,
and the routing time to connect three slices. On the other hand, bAdd−II , in (2),
includes the delay of two LUT that computes Pi and Gi, the correction stage, and
the routing time to connect three slices.

TAdd−I = n Tmuxcy + bAdd−I (1) TAdd−II = n Tmuxcy + bAdd−II (2)

Equations (3) and (4) calculate the area consumption in terms of 6-input LUTs.
In short, Add-II is slightly faster than Add-I but consumes 25% more area.

AAd−I = 8 n (3) AAd−II = 10 n (4)

In Vazquez and de Dinechin (2010) a third approach, Add-III, is proposed to
compute multi-operand decimal addition efficiently using FPGA resources such as
the carry-chain and the 6-input LUT. The design in Vazquez and de Dinechin (2010)
is oriented towards multiplication and it is based on binary addition with bias and
correction. In the bias stage, six is added conditionally. Due to the complexity of
the bias stage, the correction is simple and only uses a latch (see Fig. 3).

The circuit delay for a 2-operand adder proposed in Vazquez and de Dinechin
(2010), Add-III, is proportional to the operands width, n. Its linear parameter
is 4 Tmuxcy. However, the y-intercept only includes the delay of one LUT, one
latch, and the routing time to connect two slices. Equation (6) calculates the area
consumption in terms of 6-input LUTs.

5

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Table 1. Delays in ns for decimal adders in Virtex-7 -3

n Add-I Add-II Add-III

7 2.93 2.48 2.11
16 3.10 2.59 2.56
34 3.33 2.82 3.46

Table 2. Area in terms of 6-input LUTs for decimal adders in Virtex-7 -3

n Add-I Add-II Add-III

7 56 70 35
16 128 160 80
34 272 340 170

TAdd−III = 4 n Tmuxcy + bAdd−III (5) AAdd−III = 5 n (6)

Add-I and Add-II are significantly bigger than Add-III, 60% and 100%, respec-
tively. However, for a large enough n, these adders will be faster than Add-III. The
question is if this n is less than or equal to 34, the largest width defined in the IEEE
754-2008 standard.

3.1. Experimental Results

The operand widths in all the tables in this work are those defined in the IEEE
754-2008 standard. For correct operation/rounding, floating point units consider
one guard digit, one round digit, and one sticky bit. In some implementations such
as the proposed in Wang and Schulte (2007), the fixed point adder is extended
to n + 3 digits to deal with rounding, but in others such as Vazquez and Antelo
(2009), the adder is n-bit width and the rounding is computed by a separate module.
Anyway, the proposed implementations are parameterizable in the operand width.

The three adders analyzed above were implemented in Xilinx Virtex-7 devices
with speed grade 3. The synthesis was done using XST version 14.7 with default
parameters.

Table 1 shows that Add-III is faster than Add-II only for n = 7. For n = 16, Add-
III is still a good option because it has almost the same delay and is 50% smaller
than Add-II, as shown in Table 2. For n = 34, Add-II is the best option in terms of
speed; it is 23% better than Add-III but the former doubles the area of the latter. In
Vazquez and de Dinechin (2010), Add-III results are even better because that work
focuses on multi-operand addition, where redundant intermediate results are allowed
and the correction is done at the final addition instead of at each partial addition.
However, the Add-III approach, which is the basis for the designs that consume a
smaller area, uses the slice flip-flops reconfigured as latches to implement the final
correction step. To implement a registered output or pipeline this solution requires
an extra level of slices. In the other circuits the FFs in the final level of slices are
readily available to implement the output or pipeline register and therefore there is
no area increase.

6

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 4. i-th stage of the unsigned decimal subtractor

Figure 5. 1-bit subtractor. z[j] = x[j]− y[j]

4. Unsigned Base-10 Subtractors

In the subtraction the carry ci+1 is interpreted as a borrow of one unit from the
next digit. When the minuend is bigger than the subtrahend, the most significant
digit in the unsigned subtraction generates an overflow.

Let s = x − y be the result of a BCD unsigned subtraction. The proposed im-
plementation, Sub-U, has a binary subtraction stage followed by a correction. In
the i -th digit, the binary subtraction zi = xi − yi. If xi < yi, one unit is borrowed
from the next decimal digit, i.e., 16 is added instead of 10, zi is in [7, 15], and 6 is
subtracted in the correction stage (See Fig. 4).

The implementation is based on an efficient design of a 1-bit subtractor z[j] =

x[j]− y[j], as shown in Fig. 5, where, ps[j] = x[j]⊕ y[j] is one when one borrowed

binary unit must be propagated; the intermediate binary subtraction z[j] = nz[j].
If the binary subtractor is implemented without the inverter, zi = 15−nzi. Then,

si =

{
zi − 6 = 9− nzi if ci+1 = 1,

zi = nzi otherwise
(7)

If ci+1 = 1, zi is in [7, 15] and nzi is in [0, 8]. The subtraction result, si, is
computed as a function of nzi and ci+1:

si[0] = nzi[0]

si[1] = nzi[1]⊕ ci+1

si[2] = (nzi[1]⊕ nzi[2]) · ci+1 ∨ nzi[2] · ci+1

si[3] = nzi[1] · nzi[2] · nzi[3] · ci+1 ∨ nzi[3] · ci+1

(8)

7

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 6. Implementation of the unsigned decimal subtractor i-th stage

Fig. 6 shows the i -th Sub-U digit. Note that psi[j] = xi[j]⊕ yi[j]
The delay for an n-digit Sub-U subtractor is proportional to n and its linear

parameter is 4 Tmuxcy. The y-intercept includes the delay of two LUTs and the
routing time to connect two slices. Equation (10) calculates the area consumption
in terms of 6-input LUTs.

TSub−U = 4 n Tmuxcy + bSub−U (9) ASub−U = 6 n (10)

The subtractor explained above only generates unsigned results. However, if re-
sults are represented as SM, there is no overflow. In this new circuit with SM results,
Sub-SM, the subtraction ss = x − y is done by a correction and a sign generation
circuit, and is based on Algorithm 1.

Algorithm 1 SM subtraction

s← x− y {Unsigned subtraction (Sub-U)}
if y > x then

ss← 0− s {Unsigned subtraction (Sub-U)}
else
ss← s

end if

Either 0 − s or s − 0 is computed in the Sub-U below in Fig. 7. The proposed
binary subtractor can be modified with the multiplexers integrated in the logic.
This is done by re-engineering the propagation, pss, generation, gss, and borrow
functions between two consecutive binary subtractors. Both pss and gss are 4n-bit
vectors:

pss[4n− 1..0] = (pssn−1, pssn−2, ..., pss0) (11)

8

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 7. SM decimal subtractor

gss[4n− 1..0] = (gssn−1, gssn−2, ..., gss0) (12)

where pssi = pss[4i + 3..4i] and gssi = gss[4i + 3..4i] with i in [0..n− 1].
A binary subtractor propagates the binary digit borrow when s[j] = 0. This

happens in the case 0− 0, independently of the overflow in the Sub-U above. When
s[j] = 1, the case 0− 1 generates a borrow, and the case 1− 0 kills the borrow. In
this way, the propagation function in the Sub-U below is simply:

pssi[j] = pss[4i + j] = si[j],∀j in [0..3] (13)

On the other hand, a binary subtractor generates the binary digit borrow when
the subtractor above produces overflow, i.e., cn = 1, only if s[j] = 1. In the case that
cn = 0, no binary subtractor generates borrow. In this way, the generation function
in the Sub-U below is simply:

gssi[j] = gss[4i + j] = si[j] · cn, ∀j in [0..3] (14)

The borrow, cci+1, related to the i -th 4-bit binary subtractor, is computed using
the carry-chain circuitry available in the FPGA as shown in Fig. 8.

In case cn = 1, nzz = 0− s, otherwise nzz = s is computed. In this way, the final
result ss requires the correction in (15).

ssi =

{
9− nzzi if cci+1 = 1,

nzzi otherwise
(15)

Delay (y-intercept in (16)) and area (slope in (17)) can be reduced if the correction
stage of the first subtractor is merged with the binary subtraction stage of the second
one, i.e., binary borrow propagate and generate functions in the second subtractor
pssi[j] and gssi[j], respectively, can be computed as a function of nzi instead of si.

Note that each pair of pssi[j] and gssi[j] functions can be implemented with one
LUT6:2, as shown in Fig. 8. This figure shows the implementation of the i -th 4-bit

9

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 8. Implementation of the SM decimal subtractor i-th stage

Table 3. Delays in ns for decimal subtractors in Virtex-7 -3

n Sub-U Sub-SM

7 2.02 3.43
16 2.46 4.33
34 3.36 6.14

Table 4. Area in terms of 6-input LUTs for decimal subtractors in Virtex-7 -3

n Sub-U Sub-SM

7 42 70
16 96 160
34 204 340

binary subtractor where the result has SM representation.
The delay for an n-digit Sub-SM subtractor is proportional to n and its slope is

8 Tmuxcy. The y-intercept includes the delay of three LUTs and the routing time
to connect three slices. Experimental results are shown in Table 3. Equation (17)
calculates the area consumption in terms of 6-input LUTs. Experimental results are
shown in Table 4.

TSub−SM = 8 n Tmuxcy +bSub−SM (16) ASub−SM = 10 n (17)

5. Decimal Ten’s Complement Adder/Subtractors

Two algorithms were also designed in Bioul et al. (2010) to implement efficient
ten’s complement (C10) BCD adder/subtractors in FPGAs with 6-input LUTs.
Both approaches are based on the unsigned BCD adders proposed in that work.

10

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 9. i-th stage implementation of the C10 adder/subtractor based on the computation of P and G
from the binary addition (C10-I)

The subtraction, x− y is computed as x + (−y) where −y is the ten’s complement
of y. A/S is the signal that selects the operation between x and y.

The first approach is based on Add-I, where the P and G functions are computed
from the intermediate BCD sum (C10-I, see Fig. 9). The second approach is based
on Add-II, where the P and G functions are computed from the input data (C10-II).
Fig. 10 shows the circuit of the C10-II i -th instance.

The delay for an n-digit C10-I adder/subtractor is proportional to n and its slope
is Tmuxcy. The y-intercept includes the delay of the initial 4-bit adder, one LUT for
P and G computation, an additional LUT for the correction, and the routing time
to connect three slices. Equation (19) calculates the area consumption in terms of
6-input LUTs.

TC10−I = n Tmuxcy + bC10−I (18) AC10−I = 8 n (19)

The delay for an n-digit C10-II adder/subtractor is proportional to n and its slope
is Tmuxcy. The y-intercept includes the delay of two LUTs for P and G computation,
a dedicated multiplexer to combine the outputs of LUTs (MUXF7), an additional
LUT for the correction, and the routing time to connect three slices. Equation (21)
calculates the area consumption in terms of 6-input LUTs.

TC10−II = n Tmuxcy + bC10−II (20) AC10−II = 12 n (21)

A third approach is introduced in this work based on the decimal adder proposed
in Vazquez and de Dinechin (2010) (Add-III). As there is no room for the A/S input
in Add-III LUTs, an additional stage is required implementing:

11

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 10. i-th stage implementation of the C10 adder/subtractor based on the computation of P and G
from the input data (C10-II)

qi =

{
C9(yi) if A/S = 1,

yi otherwise
(22)

where C9(yi) is computed by

C9i[0] = yi[0]
C9i[1] = yi[1]

C9i[2] = yi[2]⊕ yi[1]

C9i[3] = yi[3] · yi[2] · yi[1]

(23)

The i-th instance of this C10-III adder/subtractor is shown in Fig. 11. The delay
for an n-digit C10-III adder/subtractor is proportional to n and its slope is 4 Tmuxcy.
The y-intercept includes the delay of two LUTs, a latch, and the routing time to
connect three slices. Equation (25) calculates the area consumption in terms of
6-input LUTs.

12

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 11. i-th stage implementation of the C10 adder/subtractor based on Vazquez and de Dinechin
(2010) (C10-III)

Table 5. Delays in ns for ten’s complement decimal adder/subtractors in Virtex-7 -3

n C10-I C10-II C10-III

7 3.09 2.67 2.77
16 3.21 2.78 3.26
34 3.44 3.01 4.16

Table 6. Area in terms of 6-input LUTs for ten’s complement decimal adder/subtractors in Virtex-7 -3

n C10-I C10-II C10-III

7 56 84 49
16 128 192 112
34 272 408 238

TC10−III = 4 n Tmuxcy + bC10−III (24) AC10−II = 7 n (25)

5.1. Experimental Results

As shown in Table 6, C10-III is the best option in terms of area. C10-I has a penalty
of 14% and C10-II 71% with respect to C10-III. C10-I is relatively better than Add-I
in this context because both circuits require the same area while C10-II and C10-III
need 2n additional LUTs over Add-II and Add-III, respectively.

As shown in Table 5, although C10-II is the worst circuit in terms of area, it is the
best in terms of speed. The y-intercept for C10-III is more relevant in this context
than for the decimal adders because its logic depth is increased by one LUT plus the
corresponding routing delay. In this way, C10-II is up to 38% faster than C10-III
(n=34), instead of 23% in the case of Add-II with respect to Add-III.

For n = 34, C10-I is interesting for some trade-offs. It is in all cases 50% smaller

13

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Table 7. Effective operation between SM operands and result sign

sx sy op ope sr

+ + + |X|+ |Y | +
+ + - |X| − |Y | if |X| ≥ |Y | then sr = 0 else sr = 1
+ - + |X| − |Y | if |X| ≥ |Y | then sr = 0 else sr = 1
+ - - |X|+ |Y | +
- + + |X| − |Y | if |X| ≥ |Y | then sr = 1 else sr = 0
- + - |X|+ |Y | -
- - + |X|+ |Y | -
- - - |X| − |Y | if |X| ≥ |Y | then sr = 1 else sr = 0

than C10-II; and 21% faster than C10-III for n = 34.

6. Decimal SM Adder/Subtractors

Let xx and yy be the SM representations of the integer numbers X and Y, respec-
tively. The operation, op, between xx and yy is 1 for subtraction and 0 for addition,
but the effective operation, ope, is computed as explained in Table 7 and (26) and
(27) considering the sign of the operands, where sx, sy, and sr are the sign of the
operands xx and yy, and result, respectively.

ope = sx⊕ sy ⊕ ope (26)

sr = ope · sx ∨ ope · sx · (|X| ≤ |Y |) ∨ sx · (|X| < |Y |) (27)

Two main strategies are developed in this section. The first one is based on the
ten’s complement adder/subtractors presented in Section 5. The second one is based
on the natural adders presented in Section 3 and the natural subtractor with SM
results introduced in Section 4.

6.1. Based on Ten’s Complement Adder/subtractors

A direct approach to develop n-digit decimal SM adder/subtractors is using C10
adder/subtractors regardless of the overflow. When the effective operation between
the absolute values is subtraction, the C10 adder/subtractor computes:

(|X|+ (10n − |Y |)) mod 10n (28)

where two cases are identified: i) |X| − |Y | ≥ 0, and ii) |X| − |Y | < 0. In case i),
operation in (28) generates carry, and as

(|X|+ (10n − |Y |)) mod 10n = |X| − |Y |,
this is the final result. On the other hand, case ii) does not generate carry because

the result is less than 10n, and as
(|X|+ (10n − |Y |)) mod 10n = 10n + |X| − |Y |,

14

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 12. Decimal SM adder/subtractor based on C10 adder/subtractors

the result is ten’s complemented, i.e., negative and the final result is its ten’s
complement:

10n − (|X|+ (10n − |Y |)) mod 10n = |X| − |Y |,
Equation (29) is based on (26) and (27) to compute the result sign, sr, where c

is the carry of the C10 adder/subtractor.

sr = ope ·sx∨ope ·sx · c∨ope ·sx · c = (ope∨ c) ·sx∨sx ·ope · c = (ope · c)⊕sx (29)

Fig. 12 shows the decimal SM adder/subtractor based on C10 adder/subtractors.
The Add Sub C10 module is implemented by the circuits in Section 5, i.e., C10-
I, C10-II, and C10-III, called SM-C10-I, SM-C10-II, and SM-C10-III, respectively.
Module Neg computes the ten’s complement. The result of the C10 adder/subtractor
is complemented when ne = c · ope.

Module Neg and the multiplexer can be implemented efficiently by the addition
of the nine’s complement (C9) of the adder/subtractor output, sa, plus one:

r =

{
C9(sa) + 1 if ne = 1,

sa otherwise
(30)

Where the input carry of the decimal adder is ne. The propagation function, Pni,
in this adder is one when C9(sai) is nine:

Pni = sai[3] · sai[2] · sai[1] · sai[0] (31)

The carry, nci+1, is computed as:

nci+1 = Pni · nci (32)

15

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 13. Implementation of the n-digit SM adder/subtractor based on C10 adder/subtractors (SM-C10-
I,-II,-III)

where nc0 = ne. Note that when nci+1 = 1, then ncj = 1 with j in [0, i]. This
means that when ne = 0, all carries are zero.

Each result digit, ri is:

ri =

{
sai if ne = 0,

C9(sai) + nci+1 otherwise
(33)

Fig. 13 shows the proposed implementation for the SM adder/subtractor based
on C10 adder/subtractors with n-digit operands.

The delay for an n-digit SM-C10-I, SM-C10-II, and SM-C10-III adder/subtractor
is proportional to n and its slope is 8 Tmuxcy in the first two cases and 12 Tmuxcy in
the third case ((34), (36), and (38)). The y-intercept in these circuits includes the
delay of bC10−i, three LUTs, and the routing time to connect three additional slices.
Equations (35), (37), and (39) calculate the area consumption in terms of 6-input
LUTs. Each circuit needs the area of the corresponding C10 adder/subtractor plus
3 n LUTs to implement the Neg module and 2 LUTs for ope, ne, and sr computation.

TSM−C10−I = 8 n Tmuxcy + bSM−C10−I
(34)

ASM−C10−I = 12 n + 2 (35)

16

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 14. Decimal SM adder/subtractor based on parallel adder and subtractor

TSM−C10−II = 8 n Tmuxcy+bSM−C10−II
(36)

ASM−C10−II = 16 n + 2 (37)

TSM−C10−III = 12 n Tmuxcy+bSM−C10−III
(38)

ASM−C10−III = 11 n + 2 (39)

6.2. Based on Unsigned Decimal Adder and Subtractor

The second approach proposed in this work to develop n-digit decimal SM
adder/subtractors is to compute the absolute-value addition and subtraction in
parallel. Then the right result is selected by the effective operation signal, ope (see
Fig. 14). The addition can be implemented by any of the three circuits in Section
3 and the subtraction is implemented by the circuit with results in SM, proposed
in Section 4. When the subtraction result is negative, cc = 1. When the effective
operation is a subtraction, ope = 1.

Result sign computation is based on (26) and (27) considering cc.

sr = ope·sx∨ope·sx·cc∨ope·sx·cc = (ope∨cc)·sx∨ope·cc·sx = (ope·cc)⊕sx (40)

In order to optimize area and time, a minor change is necessary for Sub-SM
presented in Section 4. Here, the correction stage in Sub-SM is merged with the
multiplexer that selects the right result according to the effective operation. Thus,
the correction stage of the i -th 1-digit SM adder/subtractor computes:

ri =


ai if ope = 0,

9− nzzi if cci+1 = 1,

nzzi otherwise

(41)

17

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Figure 15. Implementation of the i-th SM adder/subtractor based on unsigned adder and subtractor (SM-

U-I). Note that x is |X| and y is |Y |

ri[0] = ai[0] · ope ∨ nzzi[0] · ope
ri[1] = ai[1] · ope ∨ nzzi[1]⊕ ci+1 · ope

ri[2] = ai[2] · ope ∨ ((nzzi[2]⊕ nzzi[1]) · ci+1 ∨ nzzi[2] · ci+1) · ope
ri[3] = ai[3] · ope ∨ (nzzi[3] · nzzi[2] · nzzi[1] · ci+1 ∨ nzzi[3] · ci+1) · ope

(42)

In Fig. 15 the circuit is based on the Add-I i -th instance. For the sake of brevity,
the circuits based on Add-II and Add-III are not shown. The SM adder/subtractors
proposed in this section then are SM-U-I, SM-U-II, and SM-U-III respectively. cn =
1 when there is overflow in the subtractor above (See Fig. 6).

18

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Table 8. Delays in ns for SM decimal adder/subtractors in Virtex-7 -3

n SM-C10-I SM-C10-II SM-C10-III SM-U-I SM-U-II SM-U-III

7 4.88 4.28 4.37 3.44 3.43 3.43
16 5.00 4.40 4.86 4.33 4.33 4.33
34 5.23 4.65 5.77 6.14 6.14 6.14

Table 9. Area in terms of 6-input LUTs for SM decimal adder/subtractors in Virtex-7 -3

n SM-C10-I SM-C10-II SM-C10-III SM-U-I SM-U-II SM-U-III

7 86 114 79 142 156 121
16 194 258 178 322 354 274
34 410 546 376 682 750 580

The delay for these three n-digit adder/subtractors is dominated by the subtrac-
tor; therefore, there is only one expression for all of them (43). bSM−U = bSub−U
(see (16)).

TSM−U = 8 n Tmuxcy + bSM−U (43)

Equations (44), (45), and (46) calculate the area consumption in terms of 6-input
LUTs. Each circuit needs the area of the corresponding unsigned adder plus the
subtractor and the multiplexer. This means 2 n additional LUTs to implement the
correction and the multiplexer, and 2 LUTs for ope and sr computation.

ASM−U−I = 20 n + 2
(44)

ASM−U−II = 22 n + 2
(45)

ASM−U−III = 17 n + 2
(46)

6.3. Experimental Results

As shown in Table 9, the strategy based on C10 adder/subtractors is better than
that based on unsigned adder and subtractor in terms of area. Moreover, SM-C10-
III is the best circuit in terms of area. For example, SM-U-III, which is the smallest
circuit based on unsigned decimal adder and subtractors, is 54% bigger than SM-
C10-III.

On the other hand, as shown in Table 8, for n = 7 and n = 16, the cir-
cuits based on unsigned adder and subtractor are faster than those based on C10
adder/subtractors. However, for n = 34 results show otherwise, SM-C10-II being the
fastest option, 32% faster than the circuits based on unsigned adder and subtractor.

Note that SM-U-I and SM-U-II, based on the unsigned adders Add-I and Add-II
respectively, can be discarded because SM-U-III is better in terms of area and has
the same delay.

7. Conclusion

In this work several alternative FPGA-specific circuits were proposed for signed
and unsigned decimal addition, subtraction, and addition/subtraction. However the

19

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

focus is on SM decimal adder/subtractors, since the significand in floating-point
numbers is coded as SM according to the IEEE 754-2008 standard.

Two strategies for sign-magnitude decimal adder/subtractors were proposed and
six new FPGA-specific circuits are derived from these strategies. The first strategy
is based on ten’s complement adder/subtractors and the second one is based on
parallel computation of an unsigned adder and an unsigned subtractor. Four of the
alternative circuits are useful for at least one area-time trade-off and specific operand
size. For example, the fastest sign-magnitude adder/subtractor for operand sizes of
7 and 16 decimal digits is based on the second strategy, with delays of 3.43 and
4.33 ns, respectively; but the fastest circuit for 34-digit operands is one of the three
specific implementations, where propagation and generation functions are computed
from inputs, based on ten’s complement adder/subtractors with a delay of 4.65 ns.
On the other hand, the smallest circuit is another specific implementation based
on ten’s complement adder/subtractors, where the decimal addition has an efficient
binary adder and pre- and post-correction stages.

All the designs derived from Vazquez and de Dinechin (2010) are smaller than
those based on propagation and generation functions, but the relation is opposite in
terms of speed. Moreover, although solutions based on P and G functions computed
from the input data are the biggest, they are the fastest. The solutions based on P
and G functions computed from intermediate BCD sums consume less LUTs than
those that compute P and G from input data and more LUTs than the solutions
derived from Vazquez and de Dinechin (2010). Additionally, the solutions based on
P and G functions computed from intermediate BCD sums are faster than those
derived from Vazquez and de Dinechin (2010) for operands of size 34.

Acknowledgments

This work was supported in part by the Agencia Nacional de Promoción Cient́ıfica
y Tecnológica, Argentina, through Project PICT 2009-0041.

References

754-2008 IEEE standard for floating-point arithmetic. (2008, June).
Anderson, M., Tsen, S., Wang, L.-K., Compton, K., & Schulte, M. (2009, Oct). Performance

analysis of decimal floating-point libraries and its impact on decimal hardware and
software solutions. In Computer design, 2009. iccd 2009. ieee international conference
on (p. 465-471). doi:

Aswal, A., Perumal, M., & Srinivasa Prasanna, G. (2012, Aug). On basic financial decimal
operations on binary machines. Computers, IEEE Transactions on, 61 (8), 1084-1096.
doi:

Baesler, M., & Teufel, T. (2009, dec). FPGA implementation of a decimal floating-point
accurate scalar product unit with a parallel fixed-point multiplier. In International
conference on reconfigurable computing and fpgas (p. 6 -11). doi:

Bayrakci, A., & Akkas, A. (2007, july). Reduced delay BCD adder. In Ieee international
conf. on application -specific systems, architectures and processors (p. 266 -271). doi:

Benedek, M. (1977, july). Developing large binary to BCD conversion structures. IEEE
Transactions on Computers, C-26 (7), 688 -700. doi:

Bhat, M., Crawford, J., Morin, R., & Shiv, K. (2007, April). Performance characterization of
decimal arithmetic in commercial java workloads. In Performance analysis of systems

20

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

software, 2007. ispass 2007. ieee international symposium on (p. 54-61). doi:
Bioul, G., Vazquez, M., Deschamps, J. P., & Sutter, G. (2010). High-speed FPGA 10’s

complement adders-subtractors. International Journal of Reconfigurable Computing ,
2010 . doi:

Biswas, A., Hasan, M., Hasan, M., Chowdhury, A., & Babu, H. (2008). A novel approach to
design BCD adder and carry skip BCD adder. In VLSI design, 2008. VLSID 2008.
21st international conference on (p. 566-571). doi:

Cowlishaw, M. F. (2003, June). Decimal floating-point: algorism for computers. In 16th
ieee symposium on computer arithmetic (p. 104-111).

Dorrigiv, M., & Jaberipur, G. (2014). Low area/power decimal addition with carry-select
correction and carry-select sum-digits. Integration, the {VLSI} Journal , 47 (4), 443
- 451. doi:

Erle, M. A. (2009). Algorithms and hardware designs for decimal multiplication (Unpub-
lished doctoral dissertation). Dep. Electrical and Computer Eng, Lehigh University.

Farmahini-Farahani, A., Tsen, C., & Compton, K. (2009, dec). FPGA implementation of
a 64-bit BID-based decimal floating-point adder/subtractor. In International confer-
ence on field-programmable technology, fpt (p. 518 -521). doi:

Gao, S., Al-Khalili, D., & Chabini, N. (2012). An improved BCD adder using 6-LUT FPGAs.
In New circuits and systems conference (newcas), 2012 ieee 10th international (p. 13-
16). doi:

Gonzalez-Navarro, S., Tsen, C., & Schulte, M. (2013). Binary integer decimal-based floating-
point multiplication. Computers, IEEE Transactions on, 62 (7), 1460-1466. doi:

Gorgin, S., & Jaberipur, G. (2009). A fully redundant decimal adder and its application in
parallel decimal multipliers. Microelectronics Journal , 40 (10), 1471 - 1481. doi:

Han, L., Chen, D., Wahid, K., & Ko, S.-B. (2011). Nonspeculative decimal signed digit
adder. In Circuits and systems (iscas), 2011 ieee international symposium on (p. 1053-
1056). doi:

Han, L., & Ko, S.-B. (2013). High-speed parallel decimal multiplication with redundant
internal encodings. Computers, IEEE Transactions on, 62 (5), 956-968. doi:

Iguchi, Y., Sasao, T., & Matsuura, M. (2007, may). On designs of radix converters us-
ing arithmetic decompositions–binary to decimal converters–. In Ieee international
symposium on multiple-valued logic (p. 32 -32). Oslo, Norway. doi:

James, R., Jacob, K., & Sasi, S. (2009, april). Performance analysis of double digit dec-
imal multiplier on various FPGA logic families. In 5th southern conference on pro-
grammable logic, spl (p. 165 -170). doi:

Juang, T.-B., Peng, H.-H., & Kuo, H.-L. (2012). Parallel and digit-serial implementations
of area-efficient 3-operand decimal adders. In Soc design conference (isocc), 2012
international (p. 239-242). doi:

Kenney, R., & Schulte, M. (2005, aug). High-speed multioperand decimal adders. IEEE
Transactions on Computers, 54 (8), 953 - 963. doi:

Nicoud, J.-D. (1971, dec). Iterative arrays ror radix conversion. IEEE Transactions on
Computers, C-20 (12), 1479 - 1489. doi:

Schmookler, M., & Weinberger, A. (1971, aug). High speed decimal addition. IEEE
Transactions on Computers, C-20 (8), 862 - 866. doi:

Schulte, M. J., Lindberg, N., & Laxminarain, A. (2005). Performance evaluation of decimal
floating-point arithmetic. In 6th ibm austin center for advanced studies conference.

Schwarz, E. M., Kapernick, J. S., & Cowlishaw, M. F. (2009, jan.). Decimal floating-point
support on the IBM system z10 processor. IBM Journal of Research and Develop-
ment , 53 (1), 4:1-4:10. doi:

Shirazi, B., Yun, D., & Zhang, C. (1989, mar). RBCD: redundant binary coded decimal
adder. Computers and Digital Techniques, IEE Proceedings E , 136 (2), 156 - 160.

Svoboda, A. (1969, march). Decimal adder with signed digit arithmetic. IEEE Transactions
on Computers, C-18 (3), 212 - 215. doi:

21

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

Acc
ep

ted
 M

an
us

cri
pt

April 15, 2015 International Journal of Electronics Vaz15

Thapliyal, H., Kotiyal, S., & Srinivas, M. (2006). Novel BCD adders and their reversible
logic implementation for ieee 754r format. In VLSI design, 2006. held jointly with
5th international conference on embedded systems and design., 19th international
conference on (p. 6 pp.-). doi:

Vazquez, A., & Antelo, E. (2009, june). A high-performance significand BCD adder with
IEEE 754-2008 decimal rounding. In 19th ieee symposium on computer arithmetic
(p. 135 -144). doi:

Vazquez, A., & de Dinechin, F. (2010, October). Multi-operand Decimal Adder
Trees for FPGAs (Research Report No. RR-7420). INRIA. Retrieved from
http://hal.inria.fr/inria-00526327

Veeramachaneni, S., Kirthi Krishna, M., Avinash, L., P, S. R., & Srinivas, M. (2007,
march). Novel, high-speed 16-digit BCD adders conforming to IEEE 754r format. In
Ieee computer society annual symposium on vlsi (p. 343 -350). doi:

Wang, L.-K., & Schulte, M. (2007, june). Decimal floating-point adder and multifunction
unit with injection-based rounding. In 18th ieee symposium on computer arithmetic
(p. 56 -68). doi:

Wang, L.-K., Schulte, M., Thompson, J., & Jairam, N. (2009, march). Hardware designs
for decimal floating-point addition and related operations. IEEE Transactions on
Computers, 58 (3), 322 -335. doi:

Xilinx Inc. (2012). Virtex-5 user guide. http://www.xilinx.com. Retrieved from
http://www.xilinx.com

Yehia, K., Fahmy, H., & Hassan, M. (2010). A redundant decimal floating-point adder. In
Signals, systems and computers (asilomar), 2010 conference record of the forty fourth
asilomar conference on (p. 1144-1147). doi:

Yixiong, G., Jun, D., Na, L., & Jun, Y. (2010, jan). A research and design of decimal
floating multiplier based on FPGA. In Third international conference on knowledge
discovery and data mining (p. 314 -319). doi:

Zhou, R.-G., Li, Y.-C., & Zhang, M.-Q. (2013). Novel designs for fault tolerant reversible
binary coded decimal adders. International Journal of Electronics, 0 (0), 1-21. doi:

22

D
ow

nl
oa

de
d

by
 [

24
.2

32
.1

55
.2

26
]

at
 1

2:
11

 0
7

Se
pt

em
be

r
20

15

